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PREFACE
For the most part, this is a collection of modified problems
discussed in extracurricular circles and at tutorials and
olympiads at the Moscow University.
In selecting and preparing the problems for this collection
the authors attempted to focus the attention of the reader
on those postulates and laws of physics where students make
the most mistakes. Some problems were specially selected
to explain comprehensively the application of the most
important laws —-something which students often fail to
grasp properly. A number of problems concern the subjects
usually omitted in secondary school text—book problems.
Some problems are intended for discussion in extracurricu-
lar circles or for independent study by those wishing to
acquaint themselves with material beyond the scope of the
school syllabus.
The most difhcult problems and the problems outside
the scope of the secondary school syllabus are provided
with detailed explanations in order to give the student
a better understanding of the general principles of solution.
`With this end in view, some sections are also supplemented
with brief information about the most frequent mistakes
and the simplest means of solution.
In selecting and preparing the problems for olympiads
and extracurricular circles which are included in this
book the authors cooperated with Prof. S. G. Kalashnikov,
Prof. V. I. Iveronova, Prof. S. P. Strelkov, Assistant Profes-
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6 PREFACE
sors I. A. Yakovlev, B. I. Spassky, E. G. Shvidkovsky and
A. S. Anikeev. In addition, a number of the most instruc-
tive and readily solvable problems from such popular col-
lections of higher school problems as those by I. V. Me-
shchersky, D. I. Sakharov and I. S. Kosminkov, A. V. Tsin-
ger and others are included in this book.
The manuscript of this book was meticulously reviewed
by Assistant Professor I. A. Yakovlev and editor E. B. Kuz-
netsova, whose critical comments helped considerably to
improve it.
The authors will be extremely grateful for readers’ com-
ments and suggestions for improvements.
V. Zubov,
V. Shalnov
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PROBLEMS
Chapter I
MECHANICS
1. Rectilinear Uniform Motion
In solving the problems both in this section and in Secs 2
and 3, special attention should be paid to the general rules
for compounding and resolving motion as well as to the
vectorial nature of the principal kinematic quantities
(velocity and acceleration). Such problems are sometimes
difficult to solve, especially in the case of curvilinear motion
or the relative motion of two bodies (for example, the motion
of a ball falling to the ground relative to that of a ball
thrown vertically upwards).
These difficulties can only be obviated by considering the
separate components of motion independently and using
the rules for compounding and resolving vectors correctly.
Many difficulties can be overcome if a correct general
approach is used to solve problems on curvilinear motion.
Most of the solutions in Sec. 3 are intended to show how
the correct resolution of motion into components can reduce
a complicated problem on curvilinear motion to a simple,
familiar problem involving two independent rectilinear
motions.
When considering a uniformly variable motion, it is
necessary to use the true physical sense of the equations
for the path and velocity of this motion correctly. For
instance, when solving problems on the motion of a body
projected into the air, students frequently break the solu-
tion down into two independent stages, considering first
the uniformly retarded motion upwards until the body comes
to rest and then the uniformly accelerated motion downwards
from rest.
This method affords a comparatively simple solution
when only one body is in motion, but can hardly be applied
when the problem describes the simultaneous motion of seve-
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10 PROBLEMS
ral bodies (for example, Problems 31 and 35 where two
bodies thrown upwards one after the other meet in the air).
This approach ignores the fact that the equation S =
= vot -J-g is the general distance-time expression for
uniformly variable motion in which the body moves with
uniform retardation up to time t = Jl? (the moment when
the directional component of velocity changes), and with
uniform acceleration after this time.
In Secs 2 and 3, one should pay attention to the meaning
of the equation S: v0t—£§- used in solving the problems
and to the associated simplifications employed in the solu-
tion.
A number of serious difficulties arise because the correct
sequence of operations is not adhered to. Students some-
times do not take enough care when specifying the starting
point of the motion and the displacements of the bodies.
Then they try to avoid deriving basic equations in the
general case and attempt to write out mathematical formulae
for the unknown quantities. When solving problems involv-
ing the motion of several bodies projected at different mo-
ments or from different heights, they fix different starting
points for the displacement and time for each body. The
relations between the separate motions, which are needed
in the course of solution, are determined only at the end
by means of additional and often confusing recalculations.
This method leads to unwarranted complications even
when very simple problems are to be solved.
Most of the problems in Secs 1-3 are intended to show
once again the basic rules in selecting the origin of time and
displacement common to all the bodies considered in the
problem.
It is worth noting in these problems the general
sequence of operations, the order in which the basic equa-
tions are derived and the methods of utilizing the available
data for some points on the path to obtain the mathemati-
cal equations.
_Many problems in Secs 1-3 can be solved graphically.
Since the ability to apply and understand graphs is very
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CHAPTER 1. MECHANICS M
important, the student should try to solve the problems
graphically even when this is not specifically stated.
The resistance of the air is disregarded in all the problems
related to kinematics except for otherwise speciiied cases.
1. Two men, one in an opera house and the other sitting
at home near his radio, are listening to the same music.
(1) At what distance from the orchestra should the man
in the opera house be in order to hear the first sounds of the
overture at the same time as the radio listener if the latter
is at a distance of 7,500 km from the opera house?
(2) At what distance from the radio should the listener
be in order to hear the sounds simultaneously with the man
in the opera house sitting a distance of 30 metres from the
orchestra? The microphone is in the orchestra. The velocity
of sound is 340 m/s. The velocity of propagation of radio
waves is 3 >< 101° cm/s.
2. The distance between the towns M and K is 250 km.
Two cars set off simultaneously from the towns towards
each other. The car from M travels at a speed of v, =
= 60 km/hr and the one from K at a speed of v2 = 40 km/hr.
Draw graphs of path versus time for each car and use
them to determine the point where they will meet and the
time that will elapse before they meet.
3. A car leaves point A for point B every 10 minutes.
The distance between A and B is 60 km. The cars travel at
a speed of 60 km/hr.
Draw graphs of the path versus time for the cars. Use
these graphs to find the number of cars that a man driving
from B to A will meet en route if he starts from B simulta-
neously with one of the cars leaving A. The car from B tra-
vels at a speed of 60 km/hr.
4. An anti-tank gun fires point—blank at a tank. The burst
of the shell is observed by the crew after zi, = 0.6 s and the
sound is heard tz = 2.1 s after the shot is fired.
What is the distance between the gun and the tank? What
is the horizontal velocity of the shell? The velocity of sound
is 340 m/s. Neglect the resistance of the air.
5. How long will a passenger sitting at the window of a
train travelling at a speed of v, == 54 km/hr see a train
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12 pnonnnms
passing by in the opposite direction with speed U2 =
= 36 km/hr, if the length of the latter is l = 150 m?
6. A passenger in an electric train notices that a train
coming in the opposite direction and consisting of a loco-
motive and ten carriages takes 10 s to go past.
What is the speed of the electric_ train if the length of
each carriage in the other train is 16.5 m, the length of the
locomotive with the tender is 20 m and the distance. between
the carriages is 1.5 m? Both trains are travelling at the
same speed when they meet.
7. Will it require the same time for a launch to cover
a distance of 1 km up and- down a river (the speed of the
current is vi —.= 2 km/hr) and on a lake (in stagnant water)
if the speed of the launch relative to the water is v2 =
= 8 km/hr in both cases?
Solve this problem analytically and graphically.
8. Determine the distance traversed by the launch rela-
tive to the water in the river assuming the conditions of
the previous problem.
9. It takes one minute for a passenger standing on an
escalator in the underground to reach the top. If the escala-
tor does not move it takes him three minutes to walk up.
How long will it take for the passenger to arrive at the
top if he walks up the escalator when it is moving?
10. A launch takes 3 hours to go downstream from point
A to point B and 6 hours to come back.
How long does it take for this launch to cover the distance
AB downstream with its engine cut off?
11. An aircraft flies from point M to point B and back
with a speed of vi = 300‘km/hr (relative to the air).
How much time is needed for the entire flight if the wind
·blows continuously with a velocity of vz = 60 km/hr along
the Bight path? The distance between M and B is 900 km.
12. Two launches were going downstream with different
velocities. When one overtook the other a ring-buoy was
dropped from one of the launches. Some time later both
launches turned back simultaneously and went at the same
Speeds as before (relative to the water) to the spot where
the ring-buoy had been dropped.
Which of the launches will reach the ring-buoy Hrst?
Solve this problem also for the cases in which the launches:
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CHAPTER 1. MECHANICS 13
(1) went upstream; and (2) were approaching each other
before they met.
13. A pipe which can be swivelled in a vertical plane
is mounted on a cart (Fig. 1). The cart moves uniformly
along a horizontal path with a speed vi = 2 m/s.
At what angle on to the horizon should the pipe be placed
so that drops of rain falling plumb with a velocity U2 =
= 6 m/s move parallel to the walls of the pipe without
touching them? Consider the velocity of the drops as con-
stant due to the resistance of the air.
/ 6 0
/ 1 x
1 /
g xg? { / U
' QI /’ ...---J»-
/
l //
1/
A
A
Fig. 1 Fig. 2
14. An ice—boat glides in a straight line over a smooth
surface of ice with a speed v. The wind blows with a velocity
u = 2v perpendicular to the course of the ice-boat.
At what angle B relative to the surface of the sail will
the weather vane mounted on the mast of the ice—boat arran-
ge itself?
The sail is set at an angle of 45° to the direction of the wind.
15. A man in a boat crosses a river from point A (Fig. 2).
If he rows perpendicular to the banks then, 10 minutes
after he starts, he will reach point C lying at a distance
S =-— 120 m downstream from point B. If the man heads at
a certain angle oc to the straight line AB (AB is perpendicu-
lar to the banks) against the current the will reach point B
after 12.5 minutes.
Find the width of the river l, the velocity of the boat
u relative to the water, the speed of the current v and the
angle ot. Assume the velocity of the boat relative to the
water to be constant and of the same magnitude in both
cases.
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14 Pnonnnms
16. A launch plies between two points A and B on the
opposite banks of a river (Fig. 3), always following the
line AB. The distance S between points A and B is 1,200 m.
The velocity of the river current v = 1.9 m/s is constant
B over the entire width of the river.
The line AB makes an angle ct =
= 60° with the direction of the
current.
-2->» U ,8 With what velocity u and at
` what angle B to the line AB
“ should the launch move to cover the
distance AB and back in a time
A_ t = 5 min? The angle {3 remains
F*€· 3 the same during the passage from
A to B and from B to A.
17. What is the translational velocity of the upper points
of the rim of a bicycge whee/l if the cyclist moves with a con-
stant ve ocity v = 0 km hr?
./ A/../,4 ///////4
@5
Fig-. 4 Fig. 5
18. A bobbin with threadwound around it lies on a hori-
zowralhtabtle andl can roll along it without sliding.
i vv at ve ocity and in what directi n `ll th °
of the bobbin move if the end of the thrgadvls pullgedxilrl
a horizontal direction with a velocity v (Fig. 4)? The inner
radius of bobbin is r_and the external one R.
frO1Ii)1.t§1(t;l\{;;>)lti;%Hprev1<i1us problelgn if ghe thread is unwound
as s own in i . .
20.. When two bodies move unigormly towards each other
the distance between them diminishes by S, = 16 m every
ii = 10 s. If the bodies move with velocities of the same
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CHAPTER 1. Mncnamcs 15

magnitude and in the same direction as before the distance
between them will increase by S2 = 3 in every tz =.—. 5 s.
What is the velocity of each body?
2. Rectilinear Uniformly Variable Motion
21. A point moving with a uniform acceleration travels
distances S, = 24 m and S2 = 64 m during the first two
equal consecutive intervals of time, each of duration t :
== 4 S.
Determine the initial velocity and the acceleration of the
moving point.
22. In his laboratory register M. V Lomonosov noted
the following results of measurements on the distances tra-
versed by falling bodies: "...as they fall, bodies traverse
a distance of 151/2 rhenish feet during the first second, 62 in
two seconds, 1391/2 in three seconds, 248 in four seconds
and 3871/2 in five seconds (one rhenish foot = 31.39 cm).
Use these results to calculate the acceleration of gravity.
23. Drops of water fall at regular intervals from the roof
of a building of height H = 16 m, the first drop striking
the ground at the same moment as the fifth drop detaches
itself from the roof.
Find the distance between the separate drops in the air
as the first drop reaches the ground.
24. A body leaving a certain point O moves with an acce-
leration which is constant in magnitude and direction. At
the end of the fifth second its velocity is 1.5 m/s. At the end
of the sixth second the body stops and then begins to move
backwards.
Find the distance traversed by the body before it stops.
Determine the velocity with which the body returns to
point O.
25. Fig. 6 is the velocity-time graph for the motion of a
certain body. Determine the nature of this motion. Find
the initial velocity and acceleration and write the equation
for the variation of displacement with time.
What happens to the moving body at point B? How will
the body move after this moment?
26. Two bodies fall freely from different heights and
reach the ground simultaneously. The time of descent for
the first body is ti = 2 s and for the second, tz = 1 s.
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16 PROBLEMS

At what height was the first body situated when the other
began to fall?
27. Two bodies begin to fall freely from the same height,
the second 1: s after the first.
How long after the first body begins to fall will the distan-
ce between the bodies be equal to l?
28. In the last second of free fall a body traversed half
its path.
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From what height h. was the body dropped and what time t
did it require to reach the ground? Indicate two ways of
solving the problem.
29. One body falls freely from a point A at a height
H + h (Fig. 7) whilst another body is projected upwards
with an initial velocity vo from point C at the same time
as the first body begins to fall.
What should the initial velocity vo of the second body
be so that the bodies meet at a point B at a height h? What
is the maximum height attained by the second body for
the given initial velocity? Consider the case H = h separa-
tely.
30. How long before or after the first body starts to fall
and with what initial velocity should a body be projected
upwards from point C (see Problem 29) to satisfy simulta-
neously the following conditions: (1) the bodies meet at
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point B at a height h; and (2) the height h is the maximum
height which the projected body reaches?
31. Two bodies are projected vertically upwards from
one point with the same initial velocities vo, the second ·c s
after the first.
How long after will the bodies meet?
32. A balloon rises with a constant velocity vo. A load
IS tied by a rope to the basket.
How will the load move relative to the earth if the rope
holding it is cut when the balloon is at an altitude H O? How
long does it take for the dropping load to reach the earth?
With what velocity will it land?
33. Prove that for a body thrown vertically upwards:
(1) the initial projection velocity vo is equal to the final
velocity upon contact with the earth; (2) the time for ascent
is equal to the time for descent.
34. A heavy elastic ball falls freely from point A at a
height H 0 onto the smooth horizontal surface of an elastic
plate. As the ball strikes the plate another such ball is
dropped from the same point A.
At what time t, after the second ball is dropped, and at
what height will the balls meet?
35. Two bodies are thrown vertically upwards with the
same initial velocities vo, the second 1 s after the first.
(1) With what velocity will the second body move rela-
tive to the first? Indicate the magnitude and direction of
this relative velocity. According to what law will the
distance between the bodies change?
(2) Solve this problem when the initial velocity of the
second body vo is half the initial velocity of the first.
36. Two motor-cyclists set off from points A and B
towards each other. The one leaving point A drives uphill
with a uniform acceleration a = 2 m/sz and an initial
velocity vi = 72 km/hr, whilst the other goes downhill
from point B with an initial velocity vg = 36 km/hr
and with an acceleration of the same magnitude as the
other car.
Determine the time of motion and the distance covered
by the first motor—cyclist before they meet, if the distance
between A and B is S = 300 rn. Show how the distance
between the motor-cyclists will change with time. Plot
2—l2l8

CHAPTER 1. MECHANICS 17
point B at a height h; and (2) the height h is the maximum
height which the projected body reaches?
31. Two bodies are projected vertically upwards from
one point with the same initial velocities vo, the second ·c s
after the first.
How long after will the bodies meet?
32. A balloon rises with a constant velocity vo. A load
IS tied by a rope to the basket.
How will the load move relative to the earth if the rope
holding it is cut when the balloon is at an altitude H O? How
long does it take for the dropping load to reach the earth?
With what velocity will it land?
33. Prove that for a body thrown vertically upwards:
(1) the initial projection velocity vo is equal to the final
velocity upon contact with the earth; (2) the time for ascent
is equal to the time for descent.
34. A heavy elastic ball falls freely from point A at a
height H 0 onto the smooth horizontal surface of an elastic
plate. As the ball strikes the plate another such ball is
dropped from the same point A.
At what time t, after the second ball is dropped, and at
what height will the balls meet?
35. Two bodies are thrown vertically upwards with the
same initial velocities vo, the second 1 s after the first.
(1) With what velocity will the second body move rela-
tive to the first? Indicate the magnitude and direction of
this relative velocity. According to what law will the
distance between the bodies change?
(2) Solve this problem when the initial velocity of the
second body vo is half the initial velocity of the first.
36. Two motor-cyclists set off from points A and B
towards each other. The one leaving point A drives uphill
with a uniform acceleration a = 2 m/sz and an initial
velocity vi = 72 km/hr, whilst the other goes downhill
from point B with an initial velocity vg = 36 km/hr
and with an acceleration of the same magnitude as the
other car.
Determine the time of motion and the distance covered
by the first motor—cyclist before they meet, if the distance
between A and B is S = 300 rn. Show how the distance
between the motor-cyclists will change with time. Plot
2—l2l8





18 pnoB1.EMs
the·change of distance between the motor-cyclists against
time. Use this graph to find the moment when the motor-
cyclists meet.
3. Curvilinear Motion
-37. A body is dropped freely from the window of a rail-
way car. Will the time of the free fall be equal, if: the car
is stationary, the car moves with a constant velocity v,
the car moves with an acceleration cz?
38. A machine-gun stationed high up on the sheer bank
of a lake fires in a horizontal direction. The initial velocity
of the bullets is vo. What will the velocity of the bullets
be as they strike the water if the height of the bank is h?
39. Two solid bodies are simultaneously thrown in a
horizontal direction from two points on a sheer bank which
are at certain heights above the water surface. The initial
velocities of the bodies are vi = 5 m/s and uz = 7.5 m/s,
respectively. Both bodies fall into the water at the same
time. The hrst body enters the water at a point S = 10 m
from the bank.
Determine: (1) the duration of flight for the bodies;
(2) the heights from which they were thrown; (3) the point
where the second body dropped into the water.
40. A shell is fired from a long-range gun with an initial
velocity vo = 1,000 m/s at an angle oz. = 30° to the horizon.
How long will the shell bein the air? At what distance
S from the gun will it fall to the ground? The gun and the
point where the shell lands are on a horizontal line.
41. At what angle ot to the horizon should a body be
thrown to get the maximum range with a given initial
velocity?
42. Two bodies are thrown with the same initial velocity
at angles on and (90° — oc) to the horizon.
Determine the ratio of the maximum heights reached by
the bodies.
43. The initial velocity of a body thrown at an angle
to the horizon is vo. The maximum range is S.
At what angle cx to the horizon should the body be thrown
to have a range equal to l? (Z < S).
44. Field guns open fire on a shooting range.
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What is the minimum safe altitude for bombers flying
over the shooting range if the initial velocity of the shells
is vc = 800 m/s? The shells are fired at an elevation angle
of cx = l5° to the horizon.
45. At what angle to the horizon should a jet of water
be directed so that its elevation is equal to its range?
A ......
Fig. 8
46. A trench mortar fires at a target situated on the side
of a hill (Fig. 8).
At what distance Z (Z = AB) will the shells fall if their
initial velocity is vo, the slope of the hill is ct = 30° and
the angle of fire is 6 = 60° to the horizon?
4. Rotational Motion of a Solid Body
47. The minute-hand of the Moscow University tower
clock is 4.5 m long.
With what linear velocity does the end of the hand move?
What is the angular velocity of the hand?
48. Determine the velocity v and the acceleration a
of the terrestrial points in latitude 60° due to the daily
rotation of the Earth. The radius of the Earth is 6,400 km.
49. A pulley of radius R = 20 cm is rotated by a weight
suspended from a thread which is gradually being wound
off the pulley (Fig. 9). Initially the weight is at rest and
then it begins to go down with an acceleration a = 2 cm/s”.
2*
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Find the angular velocity of the pulley when the weight
has travelled a distance S, = 100 cm. Determine the mag-
_ nitude and direction of the acceleration of
WW / // point A at this moment.
50. What horizontal velocity should be
imparted to a body so that it moves pa-
rallel to the terrestrial surface along the
A equator? Assume that the radius of the
Earth at the equator is 6,400 km and the
I acceleration of gravity is g = 9.7 m/s“.
51. The top of a folding table 1 m“ con-
sists of two equal halves fastened together
P by hinges. When the table is folded up,
one half lies on top of the other so that
Fig. 9 their edges coincide (Fig. 10a). In order to
open the table out, the folded top should be
turned clockwisef through 90° (Fig. 10b) before the two
halves can be un olded Fig. 10c).
Find the position of the centre of rotation of the table top.
Az Br B2 AI 57
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,., [jj 0. { E ...
4 0 .4*---— 17
D, -0; cz D, 0;
Fig. 10
5. Dynamics of the Rectilinear Motion of a Point
Since we have to calculate the forces and the accelera-
tions which result from them, in almost every branch of
physics it is extremely important to know how to solve
problems involving the application of Newton’s laws. Meth-
ods for solving them are therefore illustrated in this sec-
tion.
Students often try to reduce such problems to a direct
calculation from the equation F == ma without discovering
beforehand the physical meaning of the force F in the
equation. For example, if when faced with the task fo
finding the tension F2 in a thread by which a body is set
in motion from the acceleration of the body and the known
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force of friction F,, a student will first determine the "moti-
ve" force F = ma (considering it as one of the component
forces and not as a resultant), and then, by adding to it
the "retarding" force Fi, will End the force of tension in
the thread which actually causes the motion of the body.
This method does not reveal the true picture of the physi-
cal interactions of bodies, leads to nonexistent properties
being ascribed to individual forces and sometimes makes
it altogether impossible to get the correct result without
additional artificial and unwarrantedly complex reasoning.
In particular, the method causes difficulties in problems
involving interacting forces (for example, when determin-
ing the pressure exerted by a load on a moving support or
the readings of a dynamometer which is being pulled in
opposite directions with different forces).
In this section a method is followed for solving problems
which involve the use of Newton’s second law. This requires
the student to have a clear picture of the interactions of
bodies which give rise to the forces. He must then introduce
these forces in an intelligible form (as an algebraic sum) into
Newton’s second law equation. Only when he has written
all the equations correctly can he begin to calculate the
unknown quantities directly.
As a good deal of practice is required `to master this method,
the student is advised to work through all the problems in
this section systematically.
Particular attention should be paid to problems dealing
with the motion of several interconnected bodies. In this
case the first thing to do is to derive equations from New-
ton’s second law for all the bodies in the moving system.
When solving the problems in this section, one should take
note of the way in which the interacting forces in a moving
System depend on the distribution of masses along the link
(for example, the way the tension in a thread depends on
the ratio of the masses which it joins during the motion).
One is also well advised to follow the relationship between
the linking force and the motion in the system (for example,
the relationship between the tension in a thread wrapped
over a fixed pulley and linking two weights and the accele-
ration with which these weights move).
Since it is sometimes difficult to calculate the forces of
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friction, especially when the force of friction F <kN (k is
the coefficient of friction and N is the perpendicular force
between the surfaces in contact), this section includes
several problems illustrating such calculations.
52. A body moving under the action of a constant force
F travels a distance S = 25 cm in the first second.
Determine the force F if the mass of the body is 25 g.
53. A stone sliding over a horizontal ice surface stops
after moving a distance S == 48 m.
Determine the initial velocity of the stone vo if the force
of sliding friction of the stone against the ice is 0.06 of the
weight of the stone.
54. A tramcar travelling at a speed of vo = 36 km/hr
brakes sharply, its wheels not rotating but simply sliding
along the rails.
What distance will be covered by the tramcar from the
moment the brakes are applied until it stops, if the coeffi-
cient of friction of sliding of the wheels against the rails
is k == O.2?
55. A car weighing P = 845 kgf is standing on a railway
truck.
What are the tensions in the ropes which hold the car
on the truck if the train, on braking, has a deceleration of
a = 0.5 m/sz? Disregard the friction.
56. A tractor pulls a sledge loaded with logs over an
icy road at a constant speed of 15 km/hr.
With what speed will the tractor pull the same sledge
and its load in summer over a ledger road if the power deve-
loped by the engine is the same in both cases? The coeffi-
cient of friction for motion over the icy road is k, = 0.01
and over the ledger road kz = 0.15.
57. A body weighing P = 2.5 kgf moves vertically
downwards with an acceleration a = 19.6 m/s“.
Find the force which acts on the body simultaneously
with the force of gravity P during the fall. Neglect the
resistance of the air.
_ 58. With what force does a weight P bear on a support
if the latter moves downwards with the weight and has an
acceleration in the upwards direction?
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59. A ball of mass m hangs on a thread fastened at point O.
With what acceleration and in what vertical direction
should the point of suspension O be displaced for the tension
in the thread to be equal to half the weight of the ball?
60. High-speed passenger lifts move at a speed of 3.6 m/s.
The weight of the lift and passengers may reach 1,500 kgf.
The variation in the speed of the lift as it ascends is plotted
in Fig. 11.
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Determine the tension in the cable holding the lift at
the beginning, in the middle and at the end of the ascent.
Assume g = 10 m/sz.
61. In a device designed by N. A. Lyubimov* which was
intended to demonstrate the interaction of bodies in a free
fall, three weights 1 kgf, 2 kgf and 3 kgf are suspended from
a light frame on identical springs (Fig. 12).
How will the position of the weights change and what
will be the tension in each spring when the frame is in free
fall?
62. Determine the force of air resistance acting on a
parachutist if he descends with a constant velocity. The
weight of the parachutist P = 80 kgf.
63. A body is thrown vertically upwards with an initial
velocity vo = 30 m/s and reaches its highest point of rise
after t, = 2.5 s.
* N. A. Lyubimov (1830-1897) was a professor of physics at the
Moscow UI1iVOI°Slty 3Dd 0116 of 13119 l3€&Cl1G1‘S of 13116 p1‘0II1lI1BIll% Rl1SSi&I1
physicist A. G. Stoletov (1839-1896).
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intended to demonstrate the interaction of bodies in a free
fall, three weights 1 kgf, 2 kgf and 3 kgf are suspended from
a light frame on identical springs (Fig. 12).
How will the position of the weights change and what
will be the tension in each spring when the frame is in free
fall?
62. Determine the force of air resistance acting on a
parachutist if he descends with a constant velocity. The
weight of the parachutist P = 80 kgf.
63. A body is thrown vertically upwards with an initial
velocity vo = 30 m/s and reaches its highest point of rise
after t, = 2.5 s.
* N. A. Lyubimov (1830-1897) was a professor of physics at the
Moscow UI1iVOI°Slty 3Dd 0116 of 13119 l3€&Cl1G1‘S of 13116 p1‘0II1lI1BIll% Rl1SSi&I1
physicist A. G. Stoletov (1839-1896).
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What is the mean value of the force of air resistance act-
ing on the body during the ascent? The mass of the body
is 40 g.
64. A man standing _on the platform of a decimal balance
performs rapid squatting motions. How will the readings of
the balance change at the beginning and end of squatting?
65. The table of a small shaping machine weighs 100 kgf
with the workpiece and the speed with which the table
travels under the cutter is v = 1 m/s.
m m, F
2 -
A
Fig. 13
Determine the forces which must be produced by the
mechanisms to speed up the table before cutting begins if
the speed—up time is t = 0.5 s and the coefficient of friction
of the table against the runners is k = 0.14.
66. Two weights mi and mz are connected by a thread and
lie on a smooth horizontal surface of a table (Fig. 13).
m _ ’” - m _ "L F
M / ,-/. z xx .// H//. / xé
Fig. 14
With what acceleration will the weights move if a force F
F = 10** dynes parallel to the surface of the table is applied
to the weight mz? What is the tension in the thread linking
the bodies in this case? The masses of the weights are mz =
= 200 g, mz = 300 g.
Determine the maximum force F at which the thread will
be broken if this force is applied to: (a) the weight mz;
(b) the weight mz. The thread can endure a maximum load
of T = 1 kgf. Disregard the friction between the bodies and
the table. In calculations assume g = 10 m/sz.
67. Four identical blocks, each of mass m, are linked by
threads and placed on a smooth table (Fig. 14). Force F
is applied to the first block.
Find the tensions in all the threads. Disregard the forces
of friction between the blocks and the table.
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68. In order to start a heavy railway train the engine-dri-
ver first backs his train up and then engages the forward
gear.
Why is it easier to start the train with this method? (The
train is composed of freight-cars with loose couplings.)
69. If a locomotive starts a railway train with a sudden
jolt the couplings between the freight-cars are sometimes
broken.
Why, in what part of the train and in what other condi-
tions does this occur most frequently?
70. A dynamometerD (Fig. 15) is attached to two weights
of mass M == 10 kg and m = 10 g. Forces F = 2 kgf and
f = 1 kgf are applied to the weights.
.
f?
if
f am ».»· M F V
lllllll P
Fig. 15 Fig. 16
What will happen to the weights and what will the dyna-
mometer show if: (1) the force F is applied to the larger
weight and the force I to the smaller one; (2) the force F
is applied to the smaller weight and f to the larger one;
(3) what will the dynamometer show if the masses of the
weights M and m are both equal to 5 kg?
71. Two bodies of weight Q and P are linked by a thread
as shown in Fig. 16.
With what acceleration does the body Q move if its
coefficient of friction against the table top is lc? What
is the tension in the thread connecting the bodies? Disregard
the mass of the pulley-block and the weight of the thread.
The surface of the table is horizontal.
72. Two identical weights of mass M are linked by a
thread wrapped around a pulley-block with a fixed axis.
A small weight of mass m is placed on one of the weights
(Fig. 17).
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(1) With what acceleration will the weights move? (2)
What is the tension in the thread when the weights are
moving? (3) What pressure will be exerted on the axis of
the pulley-block as the weights move? (4) With what force
7 », , / /,4, 7 will the smaller weight m
. press against the weight M?
l l Neglect the mass of the pulley-
_ ‘ _. block, the weight of the thread
_ and the air resistance.
73. Two weights Pi = 1 kgf
and P2 = 2 kgf are linked by
a thread strung over a fixed
pulley—block. Initially the
lL|!!!!!ll (llSI·E1I1CB b8l'.W€Bl'1 l§.l1B OBHIIGS
p ll -- of gravity of these weights
~ lll L is h Z 1 m (Fig. 18).
M i How long after the weights
" start to move will their cen-
_ M _ tres of gravity be at the same
Fla- 17 F1g· 18 height? Neglect the mass of
the pulley—block, the weight
of the thread and the air resistance.
74. Weights Pi and P2 are connected by a thread strung
over a Hxed pulley-block. Initially the centres of gravity
of the weights are at the same height.
as
, x
Fig. 19 Fig. 20
Determine with what acceleration and in what vertical
direction the centre of gravity of the combination of weights
will move if P2 > P2.
75. A cart weighing 20 kgf can roll without friction along
a horizontal path. The cart carries a block weighing 2 kgf
(Fig. 19). The coefficient of friction between the block and
the cart is lc = 0.25. First a force Fi = 200 gf is applied
to the block and then a force F2 = 2 kgf.

26 pnoamms
(1) With what acceleration will the weights move? (2)
What is the tension in the thread when the weights are
moving? (3) What pressure will be exerted on the axis of
the pulley-block as the weights move? (4) With what force
7 », , / /,4, 7 will the smaller weight m
. press against the weight M?
l l Neglect the mass of the pulley-
_ ‘ _.   block, the weight of the thread
_ and the air resistance.
73. Two weights Pi = 1 kgf
and P2 = 2 kgf are linked by
a thread strung over a fixed
pulley—block. Initially the
lL|!!!!!ll (llSI·E1I1CB b8l'.W€Bl'1 l§.l1B OBHIIGS
p  ll -- of gravity of these weights
~  lll L is h Z 1 m (Fig. 18).
M i   How long after the weights
"   start to move will their cen-
_ M _ tres of gravity be at the same
Fla- 17 F1g· 18 height? Neglect the mass of
the pulley—block, the weight
of the thread and the air resistance.
74. Weights Pi and P2 are connected by a thread strung
over a Hxed pulley-block. Initially the centres of gravity
of the weights are at the same height.
as
, x
Fig. 19 Fig. 20
Determine with what acceleration and in what vertical
direction the centre of gravity of the combination of weights
will move if P2 > P2.
75. A cart weighing 20 kgf can roll without friction along
a horizontal path. The cart carries a block weighing 2 kgf
(Fig. 19). The coefficient of friction between the block and
the cart is lc = 0.25. First a force Fi = 200 gf is applied
to the block and then a force F2 = 2 kgf.





CHAPTER 1. Mncmmrcs 27
Find the force of friction between the block and the
cart and their accelerations in both cases.
76. A light cart rolls without friction down an inclined
surface. A plumb line is fastened on the cart (a ball of
mass m on a thread) (Fig. 20).
What will the direction of the plumb line be when the
cart rolls freely down the slope? Before the cart started
rolling, the thread was held perpendicular to the inclined
surface.
77. A log of weight P is pulled at a constant velocity
and with a force F by means of a rope of length l. The distance
between the end of the rope and the ground ish (Fig. 21).
F
Z /
“ Y “
§g . ee. rf
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Fig. 21 Fig. 22
Find the coefficient of friction between the log and the
ground. The rope is atttfhed to the centre of gravity of the
log. Will the force of friction change if the rope is fastened
to the end of the log?
78. A man wheels a barrow at a constant speed (Fig. 22).
First he pulls it after him and later he pushes it forward.
In both cases the handles of the barrow make the same
angle oz with the horizontal.
In which case must the man apply the greater effort in
order to wheel the"barrow? The weight of the wheelbarrow
is P, its centre,of`°gravity O is above the axis of the wheel
and the coefficient of friction of the wheels aganst the
ground is equal to k. _
79. A cart weighing 500 kgf moves down a fumcular
railway inclined at oc = 30° to the horizontal (Fig. 23).
Determine the tension in the cable as the cart is braked
at the end of descent if its speed before braking was vo =
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= 2 m/s and the braking time t = 5 s. Assume the coeffi-
cient of friction to be k = 0.01.
80. A small cart with a ball suspended from a thread
(Fig. 24) moves with a velocity vo towards an inclined sur—
face.
k
//
Fig. 23 Fig. 24
In which direction from the vertical will the thread be
deflected when the cart begins to run up the inclined sur-
face?
6. Power Impulse. Momentum
The problems in this section have been selected so as
to give the reader a comprehensive understanding of the
extremely important concepts of dynamics -power impulse
and momentum, and with the law of conservation of momen-
tum albeit in its simplest form. This broadens considerably
the range of problems which can be solved by a student and
also provides a new and deeper insight into problems which
he previously solved by Newton’s laws. In solving the
problems in this section, attention should be paid first
of all to those in which the vectorial nature of the impulse
and momentum is revealed and to the rules for calculating
these quantities.
Most of the problems in this section can easily be solved
either by determining accelerations from Newton’s laws
and then calculating the velocities by the equations of
kinematics, or by calculating the velocities directly from
the impulses and from the law of conservation of momentum.
It is recommended that these problems be solved using both
methods. As you solve the problems, remember that if the
solution does not require every part of the motion to be
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determined and only the final velocities have to be found
from the given initial velocities, then the application of the
concepts of impulse and momentum, and the law of conser-
vation of momentum will always result in the simplest and
neatest methods of solution.
It is advisable to try and solve some problems from Sec. 5,
utilizing the concepts of impulse and momentum, in order
to develop good habits when selecting the best method for
a particular problem.
When attempting the problems in this section the reader
should select the simplest method of applying the law of
conservation of momentum to the calculation of velocities.
Experience shows that this will allow him to avoid many
unpleasant technical errors in calculations.
81. A ball of mass m flies perpendicularly upwards a
wall with a velocity v (Fig. 25), strikes it elastically and
rebounds with the same speed in the opposite direction.
. *'
s
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Fig. 25 Fig. 26 Fig. 27
Indicate the magnitude and the direction of the impulse
imparted to the ball by the wall. What is the average force
with which the ball acted on the wall if the impact conti-
nued for t seconds?
82. Determine the magnitude of the impulse received by
the ball from the wall (see the previous problem) if the
impact was completely inelastic.
83. A ball strikes a wall elastically at an angle or. (Fig. 26).
The mass of the ball is m, the velocity before and after
impact has the same value v and the angle of incidence is
equal to the angle of reflection. Determine the magnitude
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and direction of the vector representing the change in mo-
mentum of the ball.
84. Two balls of mass mz = 2 g and mz = 3 g move in a
horizontal plane with velocities vi = 6 m/s and vz =
= 4 m/s, respectively. The balls move at an angle of oz. =
= 90° (Fig. 27) to each other.,
What is the sum of the momenta of these balls?
85. A body is acted upon by a constant force F = 5 kgf
for a time t = 10 s.
Find the mass of the body if the resulting change in velo-
city is Av = 5 m/s.
86. A train weighs 3,000 tons. The coefficient of fric-
ILIOII if = 0.02.
What should the tractive force of the locomotive be for
the train to acquire a speed of 60 km/hr two minutes after
the motion has commenced?
87. A body of weight P slides down a rough inclined
surface. The angle of inclination is ot = 30°, the length of
the inclined surface l = 167 cm and the coefficient of fric-
tion k = 0.2. The initial velocity of the body is zero.
How long does it take for the body to reach the bottom
of the inclined surface?
88. A rope is stretched between two boats on the surface
of a lake. A man in the first boat pulls the rope with a con-
stant force F == 5 kgf.
Determine the velocities at which the first boat will move
relative to the bank and relative to the other boat t = 5 s
after the man in the first boat begins to pull the rope. The
combined weight of the iirst boat and the man in it is Pi =
= 250 kgf and the weight of the second boat and its load
is Pg = 500 kgf. Neglect the resistance of the water.
Indicate several ways of solving the problem.
89. A man of mass m. stands on a rope-ladder which is
tied to a free balloon of mass M. The balloon is at rest.
In what direction and at what speed will the balloon
move if the man starts to climb the rope-ladder at a con-
stant velocity v relative to the ladder?
90. A compressed spring is situated between two carts
of mass mi and mz (Fig. 28). When the spring expands and
iissumes its initial state it acts on each cart with an average
force F for a time ·c.
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Prove that after the spring is fully expanded and its
action ceases the carts will move along horizontal rails in
such a way that their centre of mass (centre of gravity)
remains at rest. Disregard friction.
9,1. A grenade flying in a horizontal direction with
a velocity vo = 10 m/s bursts into two fragments weighing
P, = 1 kgf and P2 = 1.5 kgf. After the burst the velocity
of the larger fragment remains horizontal and increases
to v2 = 25 m/s.
mf • ' ° ° ° •
OHO OHO
J A
Fig. 28
Find the speed and direction of the smaller fragment.
92. The world’s first reactive projectile invented by
the Russian general A. D. Zasyadko (1779-1838) weighed
about 2 kgf (without the propellant charge). The explosion
of the propellant charge ejected 200 g of powder gases from
the projectile at a velocity u, = 600 m/s.
At what distance from the point of projection will such
a body fall, if it is launched at an angle on = 45° to the
horizontal? Disregard the air resistance.
m®'2i* vg an
. · .=... -.._.
, ,< A
Fig 29.
93. A cart filled with sand rolls at a speed v2 = 1 m/s
along a horizontal path without friction (Fig. 29). A ball
of mass m = 2 kg is thrown with a horizontal velocity
vi = 7 m/s towards the cart. The ball meets the cart and
gets stuck in the sand.
In what direction and with what velocity u will the cart
move after the ball strikes it? The mass of the cart is M =
= 10 kg.
94. Assume that the jet engine of a rocket ejects the
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products of combustion in portions whose masses are m =
= 200 g and whose velocity on exit from the nozzle of the
engine is v = 1,000 m/s.
Assuming it flies horizontally with what velocity will
the rocket move after the ejection of the third portion of
the gas? What will the velocity of the rocket be at the end
of the iirst second of motion if the engine produces twenty
bursts per second? The initial mass of the rocket is M =
= 300 kg and its initial velocity is zero. Disregard the air
resistance to the motion of the rocket.
95. An artillery gun is mounted on a railway truck stand-
ing on straight horizontal rails. The total mass of the truck
with gun, shells and crew is M = 50 tons and the mass of
.§
IL --.-·- .=.=. · 5·:;e·.
y I ‘ ““‘‘ “ • g /
Fig. 30
each shell is m = 25 kg. The gun fires in a horizontal dire-
ction along the railway. The initial velocity of the shells is
vo = 1,000 m/s.
What velocity will be imparted to the truck after the
second shot? Disregard friction and air resistance.
96. An old cannon without a counter—recoil mechanism
fires a ball at an angle of on = 40° to the horizontal. The
mass of the ball is m = 10 kg and the initial velocity vo =
= 200 m/s.
What will the velocity of recoil of the cannon be if its
mass M = 500 kg? Disregard friction.
97. A body of weight P slides without friction down an
inclined board onto a cart standing at rest.
What velocity v will be imparted to the cart when the
body drops on it? The weight of the cart is Q, the initial
height of the body above the level of the cart is h and the
angle at which the board is inclined to the horizontal is on
(Fig. 30). The cart moves without friction.
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second shot? Disregard friction and air resistance.
96. An old cannon without a counter—recoil mechanism
fires a ball at an angle of on = 40° to the horizontal. The
mass of the ball is m = 10 kg and the initial velocity vo =
= 200 m/s.
What will the velocity of recoil of the cannon be if its
mass M = 500 kg? Disregard friction.
97. A body of weight P slides without friction down an
inclined board onto a cart standing at rest.
What velocity v will be imparted to the cart when the
body drops on it? The weight of the cart is Q, the initial
height of the body above the level of the cart is h and the
angle at which the board is inclined to the horizontal is on
(Fig. 30). The cart moves without friction.
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7. Work. Energy. Power
Usually, in solving the kind of problems in this section
the most serious difficulties are encountered when the
original store of energy of any system is distributed, during
motion, between several bodies simultaneously (for example,
when a body slides down a moving triangular prism, Pro-
blems 106, 107). For this reason, in addition to problems
which explain the concepts of work, energy and power, this
section includes a series of problems which require simulta-
neous calculation of the energy of several interacting bodies.
When solving such problems, one should pay attention
to the fact that if, for an elastic impact, the bodies are in
motion before and after interaction, the law of conservation
of momentum and the law of conservation of energy need
to be applied simultaneously in order to calculate the velo-
cities. The methods pertaining to the use of these laws should
be considered carefully.
The problems in this section utilize the concepts of per-
fectly elastic and inelastic impacts. When solving the
problems, one should observe the specific behaviour of the
interacting bodies in these two cases.
Most of the problems dealing with the calculation of
energy of rotating bodies are to be found in Sec. 8. In solv-
ing such problems it is worth noting those cases in which
a body’s original store of energy is converted instantaneously
into two other kinds of energy (for example, the case con-
sidered in Problem 136). Just as in Sec. 6, it is advisable
to follow the entire sequence of operations when applying
the law of conservation of energy.
98. A gun whose barrel weighs 450 kgf Hres in a horizon—
tal direction. The weight of the shell is 5 kgf and its initial
velocity vo = 450 m/s. When the shell is fired the barrel
recoils a distance of 45 cm.
Determine the mean braking force developed in the
gun’s counter-recoil mechanism.
99. A body falls with an initial velocity vo : 14 m/s
from a height h = 240 m and penetrates into sand a depth
3-1218
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34 PROBLEMS
Determine the mean resistive force of the sand. The body
weighs 1 kgf. Disregard the air resistance. Solve the problem
by two different ways: with the aid of Newton’s laws and
on the basis of the law of conservation of energy.
100. A sledge slides down an icy hill of height h (Fig. 31)
and stops after covering a distance CB. The distance AB
is equal to S.
Determine the coefficient of friction lc between the
sledge and the icy surface. Calculate the acceleration of
the sledge over the path DC and over the path CB.
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101. Will the distance S change (see the previous
problem) if the hill is sloping but has the same height h?
Will the sledge move on a hill whose base is AB = S
(Fig. 31) and whose height is h as before?
102. A uniform rectangular parallelepiped of mass m and
with sides l, 2l and 4l is placed in turn on each of its three
sides on a horizontal surface.
What is the potential energy of the parallelepiped in
each of these positions? What position will be the most
stable?
103. A bullet fired from a rifle with an initial velocity
vo = 1,000 m/s strikes the ground with a velocity v =
= 500 m/s. What work has been expended during the flight
to overcome the air resistance if the bullet weighs 10 g?
104. A boy leaning against a fence throws a stone horizon-
tally with a velocity v, = 5 m/s.
(1) What velocity v2 can the boy impart to the stone if
he throws it with the same force while standing on skates on
smooth ice? The mass of the stone m = 1 kg, the mass of the
boy M : 49 kg.
(2) Will the boy produce the same power in each case?
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(3) What will the velocity of the stone be relative to
the boy in the second case?
105. A man in a boat A, of m&SS mi = 300 kg, pulls a
rope with a force F = 10 kgf. The other end of the rope is
tied first to a tree on the bank and then to a boat B of mass
m = 200 kg.
Determine the velocity of the boat A in both cases at the
end of the third second. What work will be done in this time
and what power will the man develop in these two cases
by the end of the third second? Disregard the weight of the
rope and the resistance of the water.
106. A heavy body slides smoothly down a triangular
prism (Fig. 32). The prism lies on
a horizontal surface and can move `
along it without friction. The ¥
prism is fixed in the first case and ;
free in the second. "
Will the velocity of the body Fig- 32
when it reaches the end of the
prism be the same in both cases if the body slides each
time from the same height?
107. Determine the direction in which a load slides down
a movable prism (see the previous problem). The mass of
the load is m and the mass of the prism is M. The prism
moves in a horizontal direction due solely to the pressure
exerted by the load. There is no friction.
108. Two identical perfectly elastic balls roll towards
each other along a smooth horizontal surface. The velocities
of the balls are vi and v2.
With what velocities will the balls move after head-on
collision? The impact is perfectly elastic. There is no fri-
ction.
109. Two boats set on parallel courses move under their
own momentum through the stagnant water of a lake towards
each other and with the same velocity v = 6 m/s. As soon
as they come abreast a load is shifted from the first boat
onto the second. After that, the second boat continues to
move in the original direction but with a velocity v2 =
= 4 m/s.
Find the mass of the second boat if the first boat weighs
P, = 500 kgf empty and the weight of the load is p =
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= 60 kgf. Calculate the energy store of the boats and the
load before and after the load has been transferred. Explain
why this energy store has changed. Neglect the resistance
of the water.
110. What power must be developed by an aircraft
engine to raise it to an altitude of 1 km if the aircraft weighs
3,000 kgf and the time of ascent is 1 min?
111. The motors of an electric train moving with a velo-
city v = 54 km/hr consume a power of N , = 900 kW. The
efficiency of the motors and the drive mechanisms is k =
Z 0.8.
Determine the tractive force of the motors.
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112. The power of an engine is frequently determined
experimentally with the aid of the so—called absorption dyna-
mometer which consists of two shoes tightly gripping the
shaft of the engine. A lever with a weight on the end is
attached to one of the shoes (Fig. 33). The weight is selected
so as to equalize the force of friction and hold the lever
in a horizontal position.
Determine the power of the engine if the number of shaft-
revolutions is n = 60 rpm, the length of the lever from the
centre of the shaft is l = 1 m and the weight is Q = 50 kgf.
Disregard the weight of the lever.
113. A cyclist rides up a hill at a constant velocity.
Determine the power developed by the cyclist if the
length of the connecting rod of the pedal is r = 25 cm, the
time for one complete revolution of the rod is t : 2 s and
the mean force exerted by his foot on the pedal is F = 15 kgf.

36 L paosnnms
= 60 kgf. Calculate the energy store of the boats and the
load before and after the load has been transferred. Explain
why this energy store has changed. Neglect the resistance
of the water.
110. What power must be developed by an aircraft
engine to raise it to an altitude of 1 km if the aircraft weighs
3,000 kgf and the time of ascent is 1 min?
111. The motors of an electric train moving with a velo-
city v = 54 km/hr consume a power of N , = 900 kW. The
efficiency of the motors and the drive mechanisms is k =
Z 0.8.
Determine the tractive force of the motors.
aha l III
V" A@'f’
/3%  ;.._
¤\   me;
 
Fig. 33
112. The power of an engine is frequently determined
experimentally with the aid of the so—called absorption dyna-
mometer which consists of two shoes tightly gripping the
shaft of the engine. A lever with a weight on the end is
attached to one of the shoes (Fig. 33). The weight is selected
so as to equalize the force of friction and hold the lever
in a horizontal position.
Determine the power of the engine if the number of shaft-
revolutions is n = 60 rpm, the length of the lever from the
centre of the shaft is l = 1 m and the weight is Q = 50 kgf.
Disregard the weight of the lever.
113. A cyclist rides up a hill at a constant velocity.
Determine the power developed by the cyclist if the
length of the connecting rod of the pedal is r = 25 cm, the
time for one complete revolution of the rod is t : 2 s and
the mean force exerted by his foot on the pedal is F = 15 kgf.





CHAPTER 1. MECHANICS
114. In order to take off, an aircraft must have a velocih
v = 80 km/hr. The take-off run is S = 100 m, the weight
of the aircraft is P = 1,000 kgf and the coefficient of friction
during the run is k = 0.2.
What must the minimum power of the engine be so that
the aircraft can take off? Consider the motion during the
run as uniformly accelerated.
115. The stone of a grinding machine has a diameter
d = 60 cm and revolves at rz = 120 rpm. The workpiece is
pressed against the stone with a force
F = 100 kgf. \
What power is expended on grinding
if the coefficient of friction between the
stone and the workpiece is lc = O.2? \
116. A pulley is rotated by a drive
belt (Fig. 34). The radius of the pulley
is r : 25 cm and the number of revolu-
tions it makes n = 120 rpm. The ten- Fig- 34
sion in the driving part of the belt is
twice that in the driven part. Both parts of the belt are
parallel.
Find the tensions in the driving and driven parts of the
belt when it transmits power of W .—= 15 kW to the pulley.
8. Dynamics of a Point Moving in a Circle
Calculating the forces which act on a body moving in a
circle is, perhaps, one of the most difficult tasks in physics.
The difficulties arise as a rule when the centripetal acce-
leration in rotational motion and the acceleration in recti-
linear motion are regarded as two physical quantities which
differ in principle, each obeying its own laws: one can be
calculated from the "usual" Newton’s law and the other
from the "special" centripetal and centrifugal forces. When
such an incorrect contraposition of the laws and characte-
ristics of rectilinear motion and motion along circular
path is made, it is very difficult to solve correctly problems
in which the concept of a centrifugal force as a force acting
on the physical link between the point and the centre can-
not be employed (for example, problems on the determina-
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tion of the force which a moving car exerts on a convex
bridge).
In this section the problems and the solutions that go with
them are chosen so as to help the reader get rid of this mis-
conception, if it is present.
In solving problems involving the calculation of motion
in a circle, it should be remembered that acceleration in
rectilinear motion and centripetal acceleration are the
same in their physical nature (both change the velocity).
The only difference is that the former changes the magnitude
of the velocity vector and the latter its direction. The iden-
tity of the physical nature also predetermines the identity
of the laws used to calculate these quantities. It is not
necessary to introduce any "special” forces to calculate
centripetal accelerations apart from the forces generated
by the interaction of bodies.
Just as in calculating rectilinear motion, it is necessary
in the case of rotational motion to specify first the nature of
the change in the velocity vector, the direction and magni-
tudes of the acceleration vectors, and then to get a clear
insight into the interaction of the bodies which produce the
forces, obtain the sum of these forces and apply Newton’s
second law to calculate the sought-for quantities.
This sequence of operations is adopted for solving all the
problems in this section. This is something which should
be given a special attention.
One should carefully consider those problems in which
the necessary centripetal accelerations are provided by the
simultaneous action of two or several forces (for example,
Problems 124-140).
When solving the problems, consider the origination
of the forces in rotational motion needed to produce suf-
ficient accelerations for various kinds of interaction between
bodies (centripetal accelerations due to friction forces,
tensions in an elastic cord, forces exerted by rails, etc.).
Also observe the change in the magnitude of these forces,
their direction and the points of application when the velo-
city of a body along the circle is increased. Notice the
behaviour of a body when the forces of interaction are not
enough to set up the accelerations necessary for it to move
in a circle (for example, Problem 133).
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It is advisable in solving the problems requiring the use
of the law of conservation of energy to compare their solu-
tions with the problems in Sec. 7.
117. Two balls of mass M == 9 g and m = 3 g are attached
by threads AO and OB whose combined length is l =—. 1 m
to a vertical axis at O (Fig. 35) and are set in rotational mo-
tion in a horizontal plane about
this axis with a constant angular
velocity co. M
Determine the ratio of the lengths 0
AO and OB for which the tensions V ’ ·. »»v`
in the threads will be the same. A B
Disregard the weight of the
threads.
118. Two identical balls A and Fig_ 35
B are attached to the ends of a
thread passed through a tube as shown in Fig. 36. The ball
B rotates in a horizontal plane. The distance from the axis
of the tube to the ball B is r —:. 20 cm.
I-———r—-——i
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Fig. 36 Fig. 37
With what angular velocity should the ball B rotate so
that the ball A neither rises nor sinks? Will the equilibrium
be stable? Disregard the friction.
119. A small washer is placed on the top of a hemisphere
of radius R (Fig. 37).
What minimum horizontal velocity should be imparted
to the washer to detach it from the hemisphere at the ini-
tial point of motion?
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120. Determine the centripetal acceleration of bodies
on the terrestrial equator. Find the reduction in the weight
of bodies on the equator due to the participation of these
bodies in the rotational motion of
the Earth. The radius of the Earth
is about 6,400 km.
§ 121. A centrifugal pump has
g vanes of radius R. The pump can
§ raise water to a maximum height
| g 1. (Fig. as).
"° E "“"`* Find: (1) the number of revolu-
tions of the pump; (2) the difference
in pressure between points lying
in _ on the axis and points on the ex-
" ternal circumference of the vanes
· of the pump; (3) prove that the sum
_ of all the forces acting on water par-
F‘g· 38 ticles which are at a distance R
from the axis of rotation is moJ2R
(m is the mass of these particles).
122. A load weighing P = 1 kgf is placed on a horizontal
revolving table at a distance R = 50 cm from the axis of
rotation. The coefficient of friction between the load and
the table surface is lc = 0.25.
What is the magnitude of the force of friction retaining
the load if the table rotates at rz = 12 rpm? At what angular
velocity cn will the load be- _____________
gin to slide over the table? ,/"°' "~\
123. A small ball of m /’ \
mass m attached to a rub- )
ber cord moves in a circle `4 \_ /
through a horizontal plane `~»__ _,»/
with an angular velocity to "" ‘’‘’ "
(Fig. 39). Fig. as
Determine the radius of
the circle along which the ball will move and the tension
in the cord. The original length of the unstretched rubber
cord is lo. The force of tension in the cord increases in
proportion to the amount it is stretched. When the length
is increased by 1 cm the cord produces a force fo.
124. A car weighing P kgf moves with a constant velocity
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v: (1) over a horizontal flat bridge; (2) over a convex bridge;
(3) over a concave bridge. The radius of curvature of the
bridge in the last two cases is R.
What pressure is exerted by the car on the bridge in each
of these cases as it passes the middle point of the bridge?
125. Determine the force that presses the pilot against
his seat at the upper and lower points of a loop if the weight
of the pilot is P = 75 kgf, the radius of the loop is R =
= 200 m and the velocity of the plane looping the loop is
constant and equal to v ='360 km/hr.
126. A pendulum string of length l is moved up to a
horizontal position (Fig. 40) and released.
Z m
0
' 1
' 1
{ 1 0
1 ’ .
1 / ¢
1 / 1 z
l / -» l
,i_ /,/ c£__ 1 ,
<_,· —g
Fig. 40 Fig. 41
What should the minimum strength of the string be to
withstand the tension as the pendulum passes through the
position of equilibrium? The mass of the pendulum is m.
Disregard the mass of the string and air resistance.
127. A pendulum consisting of a small heavy bob suspen-
ded from a rigid rod oscillates in a vertical plane (Fig. 41).
When the bob passes through the position of equilibrium
the rod is subjected to a tension equal to twice the
weight of the bob.
Through what maximum angle on from the vertical will
the pendulum be deflected? Disregard the weight of t·he
rod and the resistance of the air.
128. A ball of mass m is suspended from a thread of length l.
The ball is moved up from the position of equilibrium to
the suspension point and is then released.
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v: (1) over a horizontal flat bridge; (2) over a convex bridge;
(3) over a concave bridge. The radius of curvature of the
bridge in the last two cases is R.
What pressure is exerted by the car on the bridge in each
of these cases as it passes the middle point of the bridge?
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horizontal position (Fig. 40) and released.
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At what value of oc (the angle between the thread and
the vertical, Fig. 41) will the thread be broken if it can
withstand twice the weight of the ball? What will the
trajectory of the ball be like after
/,/*‘*‘*~~.\ the thread is broken?
.# \ 129. A man swings a stone of mass
;/ \ 1 kg uniformly round in a vertical
{ 9 0 \ plane (Fig. 42). The stone is atta-
{ i tk ll ched to a thread that can withstand
\ ; a tension of 4 kgf. The axis of rota-
\ h / tion is at a distance of h = 4m from
\\ / the ground. The radius of the circle
El described by the stone is Z = 1 m.
With what angular velocity must
Fig. 42 the stone be swung round to break
the thread? At what distance S
from the man will the stone fall?
130. A small body of mass m slides without friction from
the top of a hemisphere of radius R (Fig. 43).
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At what height will the body be detached from the surface
of the hemisphere?
131. A ball slides without friction down an inclined
chute from a height h and then moves in a loop of radius R
(Fig. 44).
What is the pressure exerted by the ball on the chute at
a certain point B if the radius drawn from the centre of the
loop to the point B makes an angle on with the vertical? The
mass of the ball is m and the height h = 5/2R. Consider
the size of the ball as negligible.
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132. Determine the pressure exerted by the ball at the
point C (Fig. 44) for the conditions of motion specified
in the previous problem.
133. A heavy ball of mass m slides without friction down
an inclined chute which forms a loop of radius R (Fig. 45).
At what height will the ball leave the chute and to what
maximum height will it rise afterwards if it begins to run
down the chute without initial velocity from a height
h = 2R? Consider the size of the ball as negligible.
._.__. .- _ g Z
{ ; S ih /
lh L /
l { //
I | //
, , .. , ~~{>./’
Fig. 45 Fig. 46
134. A heavy ball of mass m is suspended from a thread
of length l = 2h which is fixed at point 0. A nail L is bam-
mered in at a distance h from the point O (Fig. 46). The
thread is moved an angle ot = 90° from the position of
equilibrium and released.
How will the ball move when the thread meets the nail
L? What maximum height will the ball attain after passing
the position of equilibrium?
135. At what minimum distance h from the point of
suspension should the nail L be driven in (see the conditions
of the previous problem) so that the ball deflected through
an angle oc = 90° will move in a circle whose centre is at L?
136. Two balls A and B with the same mass m are suspen-
ded one on a rigid thread and the other on a rubber cord.
Both balls are deflected from the position of equilibrium
through an angle cx = 90° and released. When the balls
pass through the position of equilibrium the length of the
rubber cord becomes equal to that of the thread l (Fig. 47).
Which of the balls will have the larger linear velocity
when passing through the point of equilibrium?
137. A weightless rod of length l carries first a mass 2m
at its end and then two equal masses m, one secured at the
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44 PROBLEMS
end and the other in the middle of the rod (Fig. 48). The
rod can revolve in a vertical plane around the point A-.
What horizontal velocity must be imparted to the end
of the rod C in the first and second cases to deflect it to the
horizontal position?
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138. A cyclist rides at a constant velocity of 36 km/hr
along a circle of radius 34 m.
At what angle to the vertical should he incline his bicycle?
139. What is the minimum radius of a circle along which
a cyclist°can ride with a velocity v = 28.8 km/hr if the
coefficient of friction between the tyres and the road is k =
= O.3? What is the maximum angle at which the bicycle
must be inclined to prevent the rider from falling over?
140. What is the maximum speed at which a railway
carriage can move without toppling over along a curve of
iadius R == 200 m if the distance from the centre of gravity
of the carriage to the level of the rails is h = 1.5 m, the
distance between the rails is l = 1.5 m and the rails are
laid horizontally?
141. When can a spirit level (a bubble of air in a tube
filled with a liquid) be used in a moving train to determine
the gradient of the railway bed?
142. A load is weighed on a spring balance in the carriage
of a train which is moving along a curve of radius R =
= 404 m at a speed v = 72 km/hr. The weight of the load
rs P = 5 kgf.
What will the reading of the spring balance be?
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143. An aircraft weighing P = 300 kgf flies at a speed
v = 360 km/hr and makes a turn of radius R = 2,500 m.
Determine the aircraft’s bank angle and the magnitude
of the lift needed to perform the turn in a horizontal plane.
The lift is always directed perpendicularly to the plane of
the aircraft wings.
144. A ball of mass m (Fig. 49) is attached to the end of
a thread fastened to the top of a vertical rod which is secured
to a horizontally revolving round table.
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With what angular velocity on will the table rotate if the
thread forms an angle of on = 45° with the vertical? The
length of the thread is l = 6 cm and the distance of the rod
from the axis of rotation is r = 10 cm.
145. A heavy ball of mass m is suspended from a thread of
length l. The ball rotates uniformly in a circle in a horizon-
tal plane (conical pendulum) (Fig. 50). The thread makes
an angle on with the vertical.
Find the time for one complete revolution of the ball.
9. Statics
Most of the problems in statics covered by the school
curriculum can be solved using various independent methods
—either from the general conditions of equilibrium (the
sum of forces and the sum of moments of forces are equal
to zero) or with the help of the "g0lden rule" of mechanics.
It is extremely important to master thoroughly these methods
for solving problems involving simple machines.
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46 PROBLEMS
The problems in this section are selected so as to enable
the reader to trace the application of each rule to the cal-
culation of various systems. It is advisable to follow care-
fully the sequence of operations for each- method in those
problems which are to be solved by several different ways.
Serious difficulties are encountered when the "golden
ru1e" of mechanics is applied to determine the nature' of
equilibrium for separate bodies or systems. Several problems
in this section on stability or instability of bodies are
intended to draw the student’s attention to the sequence
of operations for determining the change in the forces
and their action during small displacements of a body
from a position of equilibrium, and also to the methods
used for finding the nature of this equilibrium from the
changes.
Students usually try to solve problems which require
the centre of gravity to be found by applying the rule of
summation of parallel forces in one direction. In this case,
even the most elementary problems in which the centre
of gravity can only be determined by using the rule of
resolution of parallel forces or the rule of summation of
parallel forces oppositely directed usually become extre-
mely difhcult. Pay special attention to the solution of Pro-
blem 170 in which the sequence of applying the above rules
to determine the centre of gravity of an intricate iigure
is considered.
146. Find the resultant R of five forces equal in magni-
tude applied to one point and arranged in one plane if the
angles between all the forces are the same (Fig. 51).
147. In which case will a rope have the greater tension:
(1) Two men pull the ends of the rope with forces F equal
in magnitude but opposite in direction.
(2) One end of the rope is fastened to a fixed support and
theother is pulled by a man with a force 2F.
148. Two uniform rods each of weight P = 16 kgf and
length L = 1.2 m are suspended horizontally from ropes
(Fig. 52). The lengths of the ropes AC', BC, AD and BE
are the same and equal to l = 1 m.
Determine the tension in the ropes and the forces acting
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on the rods in both cases. The rope DA is parallel to CB
and BE is parallel to AC.
0 D 5
l Z
A B A B
Fig. 51 Fig. 52
149. A noose is placed around a log and used to pull it
with a force F (Fig. 53).
How will the tension of the ropes forming the loop depend
on the magnitude of the angle oc? In what conditions will
0
ry;/h i ’ ,4 F

B
Fig. 53
the tension of the rope in the sections AB and AC be larger
than in the section AD?
150. To rescue a car stuck on a bad road the driver ties
one end of a rope to the car and the other to a tree a distance
l = 12 m in front. Putting the weight of his body on the
middle of the rope in a perpendicular direction to it with
a force F = 40 kgf, the driver moves S = 0.6 m.
What force is acting on the car at the last moment? Consi-
der the rope as inelastic.
151. One end of a heavy uniform board of weight P and
length l presses against a corner between a wall and a floor.
A rope is attached to the other end of the board (Fig. 54).
Determine the tension in the rope BC if the angle between
the board and the rope is B = 90°. How will the tension
in the rope change as the angle on between the board and the
floor increases if the angle B remains constant?
152. A uniform beam rests on a truck with one end over-
hanging (Fig. 55). The length of the overhanging end is
0.25 the length of the beam. A force P acts on the end of
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48 PROBLEMS
the beam at point B. When P is equal to 300 kgf the opposite
end of the beam A begins to rise.
What is the weight of the beam Q?
0
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153. When a body is weighed on an unequal-arm balance
the weight of the body on one pan is Pi = 3 kgfi and on
the other P2 = 3.4 kgf.
Determine the actual weight of the body.
154. A man stands on the right-hand pan of a large beam
balance and is counterbalanced by a weight placed on the
A 0 B
1
l ei
F
Fig. 56
other pan. A rope is tied to the middle of the right—hand
arm of the balance at point C (Fig. 56).
Will the equilibrium be disturbed if the man standing
on the pan begins to pull the rope with a force F <P at
an angle of cz to the vertical? The weight of the man is P
and the length of the beam AB = l. This is an equal-arm
balance. Disregard the weight of the rope.
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155. One end of a beam is fixed to a wall. The beam is in
a horizontal position (Fig. 57). (Neglect the deflection of
the beam under the action of the force of gravity.) A force
P = 100 kgf is applied to the free end of the beam at an
angle on = 30° to the horizontal.
Find the magnitude of the force causing the tension and
deflection of the beam.
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156. A bricklayer lays four bricks to make the cornice
of a building so that a portion of each brick protrudes over
the one below (Fig. 58).
Determine the maximum lengths of the overhanging
parts when the bricks in the cornice are still in equilibrium
without mortar. The length of each
brick is l.
157. A uniform beam of length l I"'}
and weight P is balanced on a trihed-· `
ral prism.
Will the equilibrium change if a M
quarter of the beam is cut off and _
placed on the shortened end of the Fig- 59
beam on top and level with it (Fig. 59)?
If the equilibrium does change, what force is needed to re-
store the equilibrium and at which end of the beam should
it be applied?
158. A ladder of weight P and length l is placed against
a smooth vertical wall at an angle ot = 30°. The centre of
gravity of the ladder is at a height h from the floor (Fig. 60).
A man pulls the ladder at its middle point in a horizontal
direction with a force F.
What is the minimum value of the force F which will
permit the man to detach the upper end of the ladder from
4-1218
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50 PROBLEMS
the wall? The friction against the floor is such that the
bottom of the ladder does not slide.
159. Which is the easier way to set a railway carriage
in motion: by applying a force to the body of the carriage,
or by applying it to the top of the rim of the wheel?
cz
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Fig. 60 Fig. 61
160. A wooden block lies on an inclined surface (Fig. 61).
With what force should this block be pressed against the
surface to retain it in equilibrium? The weight of the block
F is P = 2 kgf, the length
/ of the inclined surface
Z: 1 m and the height
AO
[ ` /1/ F h = 60 cm. The coefficient
` of friction of the block
—- against the inclined surface
L L 161. Aheavy log is pulled
' ’“ up an inclined surface with
,_, the aid of two parallel
` ‘ “ ropes secured as shown in
Fig_ 62 Fig. 62. The weight of the
log is P : 400 kgf, the
heiglgt of the inclined surface h : 1 m, and its length
= m.
What force F should be applied to each rope to pull the
log up? Indicate two methods for solving the problem.
162. What force•should be applied to the end of the
lever of a differential winch to retain a load P = 50 kgf?

50 PROBLEMS
the wall? The friction against the floor is such that the
bottom of the ladder does not slide.
159. Which is the easier way to set a railway carriage
in motion: by applying a force to the body of the carriage,
or by applying it to the top of the rim of the wheel?
cz
/2 .: P L
// I /   { /4.7/ 0/ M/M7/77//7/4/.///.,.’»CzA#,y/ /z
Fig. 60 Fig. 61
160. A wooden block lies on an inclined surface (Fig. 61).
With what force should this block be pressed against the
surface to retain it in equilibrium? The weight of the block
F is P = 2 kgf, the length
/ of the inclined surface
Z: 1 m and the height
AO
[    ` /1/ F h = 60 cm. The coefficient
    ` of friction of the block
    —- against the inclined surface
    L L 161. Aheavy log is pulled
  ' ’“ up an inclined surface with
 ,_, the aid of two parallel
` ‘ “ ropes secured as shown in
Fig_ 62 Fig. 62. The weight of the
log is P : 400 kgf, the
heiglgt of the inclined surface h : 1 m, and its length
= m.
What force F should be applied to each rope to pull the
log up? Indicate two methods for solving the problem.
162. What force•should be applied to the end of the
lever of a differential winch to retain a load P = 50 kgf?





CHAPTER 1. Mncnamcs 51

The length of the lever is Z = 1 m, the radius of the larger
cylinder of the winch r, = 20 cm, the radius of the smaller
cylinder rz = 10 cm (Fig. 63). Indicate two methods for
solving the problem.
163. To what height h can a load P be raised (see the
previous problem) if the winch performs 10 revolutions?
( V
{Q, o
i 0
Fig. 63 Fig. 64
164. The system of pulleys shown in Fig. 64 is used to
raise a log of weight P. With what force F should the end
of the rope A be pulled for the purpose? How should the
ends of the rope B and C be fastened to keep the rising log
in a horizontal position?
Indicate two methods for determining the force.
165. A system of weights mi, mz and m3 is in equilibrium
(Fig. 65).
Find the mass m3 and the pressure force exerted by the
mass mi on an inclined surface if the masses m,, mz and
the angle on between the inclined surface and the horizontal
are known. Disregard the masses of the pulleys, the weight
of the threads and friction.
166. M of weight 10 kgf is balanced by two weights P
and Q (Fig. 66). The thread holding the weight Q is hori-
zontal from point A.
Find the weight Q and the angle on if P = 18 kgf.
4*
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167. A system composed of fixed and movable pulleys
(Fig. 67) is in equilibrium. Determine the weight Q if P =
= 10 kgf.
7 /
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Fig. 65 Fig. 66
Will the equilibrium be disturbed if point A where the
rope is fastened is shifted to the right? If the equilibrium is
disturbed, how will the weights P and Q move? Neglect the
mass of the pulleys, the weight of the rope and the friction.
/ ’ / {
A
\ \
0 0
0 6 A
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ll · ` _
p P ~ v P lillll
Fig. 67 Fig. 68
168. A light rod is secured at point O and can revolve in
a vertical plane (Fig. 68). The end of the rod at point A is
attached to a thread wrapped around a fixed pulley. The
weight P is suspended from the other end of the thread.
A weight Q is attached to the rod at point B. The length
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of the rod is l and the distance OB = l/3. The system is
in equilibrium when the rod is horizontal and the section
of the thread AC is vertical.
Determine the weight Q if P = 3 kgf. How will the rod
move if it is displaced from the position of equilibrium by
R
Fai
Q 2m y
// \\
/ \ %,,é liié
/ \ % {I?
m —————— m /
Fig. 69 Fig. 70
moving the end A slightly up or down? Disregard the mass
of the rod, the pulley and the thread and also the friction.
169. Two balls each of mass m are placed on two vertices
of an equilateral triangle. A ball of mass 2m is situated at
the third vertex (Fig. 69).
Determine the centre of gravity of this system.
170. Find the position of the centre of gravity of a uni-
form disk of radius R from which a hole of radius r is cut
out (Fig. 70). The centre of the hole is at a distance R/2
from the centre of the disk.
10. Universal Gravitational Forces
171. The gravity constant in the law of universal gravi-
tation is equal to 7 = 7 >< 10*° cm3/g·s°.
Determine the numerical value and the units of this
constant in the MKS system.
172. The great Russian scientist M. V. Lomonosov noted
that "if there was a big variation in the force of gravity
for small variations in distance a ‘wrong’ balance could be
built" (Fig. 71).
Determine the ratio between the lengths of the threads
carrying loads at which such a balance would produce an
error of 0.01 gf on the earth surface when a load of 10 kgf
is being weighed. Consider the threads to be weightless.
The mean density of the Earth is 5.6 g/cm3.
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173. The radius of the Ea·rth is r = 6,400 km, the distance
from the Earth to the Sun is R = 1.5 >< 108 km, the den-
, sity of the Earth p = 5.6 g/cm8, the
peri-od of revolution of the Earth
around the Sun is T = 365 days.
Q Use these data to calculate the mean
force of attraction exerted on the Earth
by the Sun.
174. At what angular velocity would
the Earth have to rotate so that bodies
gg at the equator became weightless?
_ A The density of the Earth is 5.6 g/cm8.
Fig- 71 175. The mean angular velocity of
the Earth around the Sun is 1° in
twenty-four hours. The distance from the Earth to the
Sun is 1.5 >< 108 km.
Determine the mass of the Sun.
176. The maximum altitude reached by the Soviet-made
balloon "Osoaviakhim” was h = 22 km.
Determine the change in the acceleration of the force
of gravity during such an ascent. q
177. In what seasons of the year is the linear velocity
of the Earth around the Sun larger and when is it smaller?
178. Assume that a certain body moves inside the Earth
from the surface to its centre.
How will the force of gravity acting on the body depend
on the distance from the body to the centre of the Earth?
Consider the Earth as a sphere of uniform density.
11. Oscillations
This section is focussed on a brief review of the basic
laws of oscillations of a simple pendulum and the elucidation
of the problems which deal with the relationship between
the period of oscillations and the mass of the oscillating body
as well as the nature of the forces acting on it. These pro-
blems also demonstrate the relationship between the mag-
nitude of the forces necessary to generate oscillations and
the amplitude, the frequency of oscillations and the mass
of the liodyl;. A qualitative analysis of these relationships
can easi y e grasped by the reader and it is essential for
understanding the laws of oscillatory motion.
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Pay special attention to the behaviour of a pendulum
on a cart moving with an acceleration (Problem 182) and
discuss in detail the solutions of Problems 183 and 184
at extracurricular circles.
179. An accurate astronomical clock with a seconds pen-
dulum is mounted in the basement of the main building
of the Moscow University.
How much will this clock lose in twenty—four hours if it
is transferred to the upper storey of the University which
is 200 m higher than the basement?
180. Two pendula begin to swing simul- ’
taneously. During the first fifteen oscilla- ,
tions of the first pendulum the other pen- (
dulum makes only ten swings. ·
Determine the ratio between the lengths l
of these pendula.
181. A pendulum is attached to a board ·
which can fall freely without friction • T
down guide ropes (device designed by
Prof. Lyubimov). Before the board is re- F. 72
leased the pendulum is deflected from the lg`
position of equilibrium (Fig. 72).
Will the pendulum swing as the board is falling?
182. A pendulum is secured on a cart rolling without
friction down an inclined surface. The period of the pendu-
lum on an immobile cart is T0.
How will the period of the pendulum change when the
cart rolls down the slope?
183. The Soviet scientist N. N. Andreyev suggested the
following approximate method to estimate the small ampli-
tudes of oscillation of the surface of vibrating bodies: a thin
layer of dry sand is scattered over the surface being investi-
gated. When the surface is made to oscillate the sand grains
also begin to oscillate with it. If the amplitude is increased
sufficiently the grains are detached from the surface and
begin to bob up and down. If different parts of the surface
oscillate with different amplitudes (as, for example, a tele-
phone membrane), the grains are gradually accumulated at
the points of minimum amplitude.
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Explain the cause of such behaviour of the grains. Will
the behaviour of the grains be affected by their mass? Will
the frequency of oscillations be of any importance?
184. A hydrometer consisting of a ball filled with shot
and a cylindrical tube of cross section S is placed in a liquid
of density p. The hydrometer is immersed in the liquid
somewhat deeper than actually needed for equilibrium
and then released. It then begins to perform free oscilla-
tions near the position of equilibrium.
Show how the period of oscillation of the hydrometer will
change when: (a) its mass is increased; (b) the diameter of
the tube is decreased; (c) the
density of the liquid is increa-
’ |g | Sed.
I ‘ 185. A board is placed hori-
1- - zontally on two rollers revol-
‘ | ving in opposite directions as
» 5G' i shown in Fig. 73. The weight of
l ` the board is P and the distance
Fig- 73 between the axes of the rollers
is 2l. The coefficient of friction
between the board and each of the rollers is k. Initially,
the board was placed so that its centre of gravity was a
certain distance sc from the middle line CC'
Determine the type of motion that will be performed by
Ehe blpard ulnder the action of the forces of friction produced
y t e ro ers.
12. Hydro- and Aerostatics
186. A piston fitted tightly against the inner walls of a
long cylindrical tube is moved with the aid of a long rod.
The tube with the piston at its lowest point is sunk into
a well. As soon as the bottom of the tube is immersed in the
water the piston is raised by means of the rod (Fig. 74).
To what height h from the level of the water in the well
can the water in the tube be raised by this method? The
atmospheric pressure is 760 mm Hg.
187. Under what pressure P0 must water be supplied
by & pumping station arranged in a basement so that the
Pressure of the water in the pipes is not less than P =
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= 1.5 kgf/cmz? The height of the upper storey above the
basement is h = 200 m.
188. A hole of area 5 cm’ is formed in the side of a ship
three metres below the water level.
What minimum force is required to hold on a patch cover-
ing the hole from the inside of the (
ship?
189. A vessel contains air compressed rh
to four technical atmospheres. A force
of F = 9.3 kgf has to be applied to
hold in place a plug in the round aper—
ture in the vessel. The radius of the ilf
aperture is r = 1 cm.
Determine the atmospheric pressure. T
190. The limbs of a glass U-tube are Q
lowered into vessels A and B (Fig. 75).
Some air is pumped out through the top = —
of the tube C. The liquid in the left-
hand limb then rises to a height hi and
in the right-hand one to a height hz. _
Determine the density of the liquid F'g• 74
in limb B if water is present in limbA,
hi = 10 cm and hz = 12 cm.
191. To what height h should a cylindrical vessel be
filled with a homogeneous liquid to make the force with
which the liquid will press on the side of the vessel equal
to the pressure on the bottom of the vessel?
192. Some air is pumped out of a tube one end of which
is immersed in water. The water in the tube rises above
tap A (Fig. 76).
Will the water flow out from tap A if it is opened?
193. A barometer shows an air pressure of 75 cm Hg.
Find the pressure at a depth of 10 m under the surface
of water.
194. A cylindrical opening in the cover of a large vessel
filled with water is tightly closed by a piston (Fig. 77).
A vertical tube of radius r = 5`cm is attached to the piston.
The radius of the piston is R s.- 10 cm and the weight of
the piston and the tube is Q = 20 kgf.
How high will the water in the tube rise when the piston
is in equilibrium?
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195. Equal amounts by weight of mercury and water are
poured into a cylindrical vessel. The total height of the
two layers of the liquids is ho T: 29.2 cm.
(2
5
.. fg
Fig. 75 Fig. 76 Fig. 77
What pressure does the liquid exert on the bottom of the
vessel. The specific gravity of tllé mercury is 13.6 gf/cm3.
196. Two cylindrical communicating vessels with equal
cross section S = 11.5 cm2 contain mercury. One litre of
water is poured into one vessel on top of the mercury and
a body weighing p : 150 gf is lowered into the water.
What distance will the mercury level move in the second
vessel after pouring in the water and lowering the body?
197. Water and oil are poured into the two limbs of a
U-tube containing mercury (Fig. 78). The interfaces of the
mercury and the liquids are at the same height in both limbs.
Determine the height of the water column hi if that of
the oil hz = 20 cm. The density of the oil is 0.9.
198. Two communicating vessels contain mercury. The
diameter of one vessel is four times larger than the diameter
of the other (Fig. 79). A column of water of height ho ==
= 70 cm is poured into the left—hand vessel.
How much will the mercury level rise in the right—hand
vessel and how much will it sink in the left one? How much
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will the mercury level rise in the narrow vessel if a column
of water of the same height is poured into the broad vessel?
199. Mercury is poured into a U-tube in which the cross-
sectional area of the left—hand limb is three times smaller
.. P i l |
~— é 2 Q Q
E s .s E
E 5 s l § ..
- r
\ A -%, I UI P V .. N
` \ - I • I s.- ,,'-(.»;.a·=` .\ `
Fig. 78 Fig. 79
than that of the right one. The level of the mercury in the
narrow limb is a distance l = 30 cm from the upper end
of the tube.
How much will the mercury level rise in the right—hand
limb if the left one is filled to the top with water?
200. Cylindrical communicating vessels with the same
diameters and the same height contain -
mercury (Fig. 80). A column of water I
of height ho .~= 32 cm is poured into ‘+"“
one of the limbs on top of the mercury. J;
How will the levels of the mercury be l
arranged with respect to each other in ‘ · `
both vessels if they are filled to the v._y
top with kerosene? The specific gravity AM" if
of mercury yi = 13.6 gf/cm3 and of F1g‘ 80
kerosene Y2 = 0.8 gf/cm3.
201. A vessel containing water is equalized on a balance
and then the end of a wooden rod is immersed in the water,
its other end being held by hand.
What additional weight should be placed on the other
pan to restore the equilibrium if the volume of the submerg-
ed part of the wood is 50 cm3?
202. A swimmer floats face up motionless, the whole of
his body being submerged in the water except for a small

onaprnn 1. Mnonlmros 59
will the mercury level rise in the narrow vessel if a column
of water of the same height is poured into the broad vessel?
199. Mercury is poured into a U-tube in which the cross-
sectional area of the left—hand limb is three times smaller
.. P i l |
~— é 2 Q Q
E s .s E
E 5 s l § ..
-   r  
\ A -%, I UI P V .. N
` \ - I •   I s.- ,,'-(.»;.a·=` .\ `
Fig. 78 Fig. 79
than that of the right one. The level of the mercury in the
narrow limb is a distance l = 30 cm from the upper end
of the tube.
How much will the mercury level rise in the right—hand
limb if the left one is filled to the top with water?
200. Cylindrical communicating vessels with the same
diameters and the same height contain -
mercury (Fig. 80). A column of water I
of height ho .~= 32 cm is poured into ‘+"“ 
one of the limbs on top of the mercury. J;    
How will the levels of the mercury be l    
arranged with respect to each other in ‘ · `  
both vessels if they are filled to the   v._y  
top with kerosene? The specific gravity AM"   if
of mercury yi = 13.6 gf/cm3 and of F1g‘ 80
kerosene Y2 = 0.8 gf/cm3.
201. A vessel containing water is equalized on a balance
and then the end of a wooden rod is immersed in the water,
its other end being held by hand.
What additional weight should be placed on the other
pan to restore the equilibrium if the volume of the submerg-
ed part of the wood is 50 cm3?
202. A swimmer floats face up motionless, the whole of
his body being submerged in the water except for a small





60 PROBLEMS
part of the face. The swimmer weighs 75 kgf. Find the
volume of his body.
203. A hydrometer takes the form of a glass cylindrical
tube soldered at both ends, having a length l= 20 cm
and an external diameter D = 1.2 cm; the thickness of the
walls ish = 1 mm, the density of the glass is 2.6 g/cms.
The lower part of the tube contains 1 cms of mercury.
What is the minimum density that can be measured with
the aid of such a hydrometer?
204. A solid uniform ball of volume V floats on the
interface of two immiscible liquids (Fig. 81). The specific
=-wi;
Fig. 81
gravity of the upper liquid is yi and of the lower one Y2,
whilst the specic gravity of the ball is y (yi <y <·y2),
What fraction of the volume of the ball will be in the
upper liquid and what fraction in the lower one?
205. A vessel is filled first with mercury and then with
oil. A ball lowered into the vessel floats with exactly half
its volume in the mercury (Fig. 81).
Determine the specific gravity of the ball. The specihc
gravity of oil is yi = 0.9 gf/cms and of mercury Y2 =
= 13.6 gf/cms.
206. A cubic body floats on mercury with 0.25 of its
volume below the surface.
What fraction of the volume of the body will be immersed
in the mercury if a layer of water poured on top of the mer-
cury covers the body completely?
207. Determine the density of a uniform body weighing
P1 = 280 gf in air and P2 = 169 gf in water. Neglect
weight losses in air.
208. The weight of a body in water is one third of its
weight in air. What is the density of the body?
209. On one pan of a balance is placed a piece of silver
ivgggggng 105 gf and on the other a piece of glass weighing
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gravity of the upper liquid is yi and of the lower one Y2,
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volume below the surface.
What fraction of the volume of the body will be immersed
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cury covers the body completely?
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weight in air. What is the density of the body?
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Which pan will move down when the balance is immersed
in water? The density of silver di = 10.5 g/cm? and of
glass dg = 2.6 g/cm?.
210. A copper ball with a hollow centre weighs P, =.-
= 264 gf in air and P2 = 221 gf in water.
Determine the volume of the hollow centre of the ball.
The density of copper is d = 8.8 g/cm?.
211. A piece of iron weighs 400 gf in water. Determine
its volume. The density of iron is 7.8 g/cm?.
212. The capillary of a mercury thermometer weighs
Pi = 66 gf in air and P2 = 44 gf in water.
Find the weight of the mercury filling the tube. The
specific gravity of mercury is yi = 13.6 gf/cm? and of glass
Y2 T. 2.6 gf/cm?.
213. Two bodies with volumes V and 2V are equalized on
a balance. The larger body is then immersed in oil of density
di = 0.9 g/cm3.
What must be the density of the liquid in which the
smaller body is simultaneously immersed so as not to
disturb the equilibrium of the balance?
214. Calculate the change in the potential energy of a
body raised in water to a height h.
Will the potential energy of the water in the vessel change
when the body rises? What will happen when the density
of the body is larger and smaller than the density of the
water? The density of the body is d, the density of the water
is do and the volume of the body is V.
215. A body of volume V = 500 cm? being weighed in
air is equalized on a balance by copper weights totalling
Pi = gf.
Determine the true weight of the body. The specific
gravity of copper is Y, = 8.8 gf/cm? and of air yo = 1.29 gf/l.
216. In accurate weighing a correction is usually intro-
duced to account for weight losses in air for the body being
weighed and for the set of small weights.
In what case may this correction be dispensed without
impairing the accuracy of weighing?
217. lf a vessel is hlled with air its weight is Pi =
t== 126.29 gf. When this vessel is filled with carbon dioxide
its weight becomes P2 :.· 126.94 gf, and when it is filled
with water, P3 = 1,125 gf.
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Determine the specific gravity of carbon dioxide yi, the
volume V0 and the weight P0 of the vessel. The specific
gravity of air is yo = 1.29 gf/l.
218. The envelope of a balloon has a volume of 100 m3
and is filled with hydrogen. The weight of the envelope
with the hydrogen is 50 kgf.
Find the lift of the balloon and the density of the layer
of the air in which the balloon will be in equilibrium. The
density of the air near
*;;.--5:;-%-7; the terrestrial surface is
A 1.29 g/1.
219. What must the ra-
tio of volumes of water and
l-I `°" alcohol be for their mix-
Tr ture to have a density
Q? dg = 0.9 g/cm3? When the
-. lh alcohol is mixed with the
· yr water the volume of the
B mixture diminishes. The
" volume of the mixture is
Fig- 82 0.97 of the initial volume
of the water and the alco-
hol.
220. What ratio by volume of carbon dioxide and water
is needed to prepare a mixture in which a- rubber ball filled
with air could float without sinking or rising? The volume
of the ball is V= 5 l and the weight of its shell P = 1.5 gf.
Under normal conditions the specific gravity of the air
is yi = 1.29 gf/1 and that of the carbon dioxide is Y2 =
== 1.98 gf/1.
221. Plot the variation with time of the water level in
the open vessel shown in Fig. 82 if the velocity of the
water flowing from the infeed pipe A is less than the
velocity of water flowing from the siphon pipe B.
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Chapter II
HEAT AND MOLECULAR PHYSICS
13. Thermal Expansion of Bodies
222. At a temperature to the pendulum of a clock has a
length of Z0 and the clock then goes accurately. The coef—
{icient of linear expansion of the pendulum material is
oc = 1.85 >< 10"5.
How much will the clock gain or lose in twenty-four
hours if the ambient temperature is 10°C higher than to?
In deriving the formula allow for a small value of the coef-
ficient of linear expansion of the pendulum.
223. A steel rod with a cross-sectional area S = 10 cm2
is set lengthwise between two rigidly secured massive steel
plates.
With what force will the rod press against each plate
if the temperature of the rod is increased by t= 15°C?
The modulus of elasticity of steel is E : 2.1 >< 106 kgf/cm2,
and the coefficient of linear expansion of steel is cx = 1.1 ><
>< 10-5.
224. A bar measured with a vernier caliper is foudn to
be 180 mm long. The temperature during the measurement
is 10°C.
What will the measurement error be if the scale of
the vernier caliper has been graduated at a temperature of
20°C?
225. A steel cylindrical component machined on an engine
lathe is heated to a temperature of 80°C. The diameter of
the component should be 5 cm at a temperature of 10°C
and the permissible error should not exceed 10 microns from
the specified dimension.
Should corrections for the thermal expansion of the
component be introduced during the process of machining?
226. When making a certain physical instrument it was
found necessary to ensure that the difference between the
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64 PROBLEMS

lengths of an iron and a copper cylinder remained the
same whatever the temperature change.
How long should these cylinders be at 0°C so that the
difference between them is 10 cm whatever the temperature
change? The coefficient of linear expansion of iron is cz, =.
= 1.1 X 10‘“ and of copper otz =. 1.7 X 10*5.
227. The brass scale of a mercury barometer has been
checked at 0°C. At 18°C the barometer shows a pressure of
760 mm.
Reduce the reading of the barometer to 0°C. The coeffi-
cient of linear expansion of brass is ct = 1.9 X 10‘° and
the coefficient of volume expansion of mercury fl = 1.8 X
X 10-4.
228. The volume occupied by a thin-wall brass vessel
and the volume of»a solid brass sphere are the same and
equal to 1,000 cm3 at 0°C.
How much will the volume of the vessel and that of the
sphere change upon heating to 20°C? The coefficient of linear
expansion of brass is cz. = 1.9 X 10"’.
229. In observing thermal expansion of liquids a certain
part of a glass vessel is filled with a mixture whose coefiicient
of volume expansion is pz =.- 8 X 10‘° in order to exclude
the effect of the change in volume of the vessel during
heating.
Determine what fraction of volume of the vessel should
be tilled with the mixture so as to compensate completely
for- the thermal expansion of the vessel. The coefficient of
volume expansion of glass is [$1 =-. 3 X 10"5.
230. In the past, temperature was measured in laborato-
ries using the so-called "weight" thermometer which consi-
sted of a hollow platinum sphere filled with mercury and
provided with a capillary hole. An increase in temperature
was estimated from the amount of mercury flowing out
of the hole.
How much mercury should flow out of the hole of such
a thermometer when the temperature is increased by 1°C
if the completely filled sphere of the thermometer contained
700 gf of mercury at 0°C? The coefficient of volume expansion
of platinum is fl, —.= 2.7 X 10-5 and of mercury B2 =
f=. 1.8 X 10**.
231. In his work "On the Free Movement of Air in Mines"
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CHAPTER 11. HEAT AND MOLECULAR PHYSICS 65
the Russian scientist M. V. Lomonosov discovered the
plysical causes for the appearance of permanent streams of
air in mines. In particular, Lomonosov studied the flow
of air in mines of the type shown in Fig. 83.
Determine the direction in which the air will flow in
such a mine in winter and in summer. Prove that these
—` \ R
lf! {__ · 3 0 .·;· ; l , ·_/ 7 * /’· ’# ll
Fig. 83 Fig. 84
streams arise of necessity by themselves. Consider the tem-
perature of air as constant and the same at all points in
the mine and in all the seasons of the year.
232. M. V. Lomonosov also described the flow of air
in mines of the kind shown in Fig. 84.
Prove that the flow takes place and find the direction
of motion of air in such a mine in winter and summer. Use
the same assumptions as in Problem 231.
14. Quantity of Heat. Heat Exchange
233. 300 g of ice at a temperature of —20°C are immersed
in a calorimeter containing 200 g of water at a temperature
of 8°C.
What will be the temperature of the calorimeter and its
contents after thermal equilibrium is reached?
234. A piece of iron of mass m = 325 g is placed in a calo-
rimeter filled with thawing ice.
Determine the amount of ice that will melt by the time
thermal equilibrium is reached if the volume of the piece
of iron being lowered into the calorimeter is V = 48 cms.
s-1212.
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66 PROBLEMS
The density of iron at 0°C is dg = 6.8 g/cm3, its thermal
capacity C = 0.12 cal/g·deg and the coefficient of volume
expansion of iron is fl: 0.33 X 10"’=.
235. It takes 15 minutes to raise a certain amount of
water from 0°C to boiling point using an electric heater.
After this one hour and twenty minutes are required in
the same conditions to convert all the water into vapour.
Use these data to determine the latent heat of vapouriza—
tion of water.
236. A vessel from which the air is rapidly being pumped
out contains a small amount of water at 0°C. The intensive
evaporation causes a gradual freezing of the water.
What part of the original amount of water can be conver-
ted into ice by this method?
15. The Gas Laws
The ideal gas laws acquire their simplest form when the
absolute temperature scale is used. This form allows a visual
and much deeper insight into the essence of the laws and
makes it possible at the same time to simplify appreciably
the solution of all problems and reduce errors.
Experience shows, however, that some students under-
estimate the importance of this method of writing the laws
of an ideal gas. For this reason some of the problems in
this section require the formulas showing the dependence
of volume and pressure of a gas on absolute temperature
to be derived and only absolute temperatures are used
in this section. One should watch the order when applying
the laws in this way, solve the problems using the usual
equations with the binomial of volume expansion and pay
attention to the simplifncations when solving them for the
first time.
A number of problems involving a simultaneuos change
in the temperature, pressure and volume of a gas are inclu-
ded in this section to help the reader master the laws which
govern the simplest proccesses that may occur in an ideal
gas. With the same aim in view, some problems deal with
simultaneous constant pressure, constant volume or constant
temperature processes that occur in a given mass of gas.
Graphical methods of solving the problems are extremely
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helpful in the study of the laws of an ideal gas. A proper
understanding of the plots showing the change in the state
of an ideal gas and the ability to interpret the nature of
changes of all the parameters that determine the state of
a gas (for example, the change in gas pressure from the
plot of gas volume versus temperature) are essential to
attain a thorough knowledge of this branch of physics.
Many graphical problems in this section are intended
to develop these skills and throw some light on the essence
of the equations representing the simplest processes that
can take place in an ideal gas.
When solving problems involving the application of
Gay-Lussac’s law most of the errors are caused by the
incorrect use of the coefficient of volume expansion of a gas.
We know that the change in the volume of a gas on heat-
ing is always related to the volume occupied by a given
mass of gas at nought degrees Centigrade. Some pupils
forget this, and relate the change in the volume of a gas
not to the state at zero degrees but to some other "initial"
volume corresponding to the "initial" temperature speci-
hed in the conditions of the problem. This widespread error
is discussed in Problem 253. A thorough examination of this
problem is recommended.
At the end of the section there are some elementary
problems on the calculation of the work done by agas and
the expenditure of heat required to raise the temperature
of a gas in various conditions. Study the theory of the
subject again before you tackle the problems.
237. Using Gay—Lus$ac’s law V = V0 (1 + oct) and the
definition of absolute temperature, derive the formula for
the relationship between volume and absolute temperature
at constant pressure. Plot this dependence.
238. Derive the formula showing the dependence of pres-
sure on absolute temperature in this process if at constant
volume P = P0 (1 —{— oct). Plot this dependence.
239. A certain mass of gas is heated first in a small vessel
and then in a large one. During heating the volumes of
the vessels remain constant.
How will the pressure—temperature graphs differ in the
first and the second case?
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240. The gas in a cylinder is enclosed by a freely moving
piston. Plot the dependence of volume on temperature:
(a) when the gas is heated with a small load on the piston;
and (b) with a large load.
How will the position of the volume versus temperature
curve change at constant (internal) pressure when the
external pressure is altered?
241 . What will the relative arrangement of the isothermal
lines of a gas be on the volume—pressure graph for the expan-
sion of the same mass of gas at a low and a high temperature?
7
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242. Draw curves showing the dependence of volume on
temperature for gases at constant pressure, constant volume
and constant temperature.
243. How will constant volume, constant pressure and
constant temperature processes be_d.epicted on a diagram
showing the relationship between pI'&sure and temperature?
244. Plot the dependence of pressure on volume for gases
at constant temperature, constant pressure and constant
volume.
245. The gas in a cylinder is enclosed by a piston A
(Fig. 85). The piston end has an area B supporting a certain
amount of sand that exerts the necessary pressure on the
piston. lf some sand is pushed in small portions onto the
shelves near the support the pressure exerted on the piston
will gradually change. It is also possible to change the
temfierature of the gas by placing the cylinder on heaters or
coo ers.
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A plot of pressure versus volume for a gas expanding
in such a cylinder made from direct measurements is illu-
strated in Fig. 86.
How can this plot be used to determine the nature of
change in the temperature of the gas?
246. A curve showing the dependence of pressure on
absolute temperature was obtained for a certain gas
(Fig. 87). Does compression or expansion take place when
the gas is being heated?
P
V
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247. Use the volume—temperature curve (Fig. 88) to fmd
graphically the nature of change in the pressure of a gas
during heating.
248. A constant volume vessel is used to heat first m
grams of a certain gas and then 2m. grams of the same gas.
Draw the curves showing the dependence of pressure on
temperature in each cpgse. Indicate the difference in the
positions of the curves"*""*·;
249. A movable pis·&n is inserted in a cylinder closed
on both ends. One end of the cylinder contains m. grams of
a certain gas and the other 2m grams of the same gas.
What fraction of the cylinder by volume will be occupied
by 2m. grams of the gas when the piston is in equilibrium?
250. A gas of molecular weight it is heated in a cylinder
enclosed by a freely moving piston. A gas of molecular
weight 2p is then heated in the same cylinder. The masses
of the gasses and the pressure exerted by the load on the
piston are the same in each case.
Will the plots of volume versus temperature be the
same in each case?
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A plot of pressure versus volume for a gas expanding
in such a cylinder made from direct measurements is illu-
strated in Fig. 86.
How can this plot be used to determine the nature of
change in the temperature of the gas?
246. A curve showing the dependence of pressure on
absolute temperature was obtained for a certain gas
(Fig. 87). Does compression or expansion take place when
the gas is being heated?
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70 PROBLEMS

251. The piston in a gas—iilled cylinder is loosely fitted
against the wall of the cylinder and can slowly let the gas
go past. The volume-temperature curve for the gas at con-
stant pressure has the form shown in Fig. 89.
Use this curve to determine whether the amount of gas in
the cylinder has increased or decre-
V ased.
252. Plot the variation in the den-
/ sity of a gas with temperature at con-
7 stant pressure and the dependence of
the gas density on pressure at con-
7 stant temperature.
0 253. On the thermometric scale of
Fig. 89 the Russian Academician I. N. Delil
the boiling point of water corresponds
to zero and the melting point of ice to —150°.
What value f the temperature coefhcient of gas expan-
sion at constg pressure should be taken when temperature
is measured on Delil’s scale?
254. A hollow ball·with a capacity o 100 cm? is fitted
with a long graduated tube. The internal volume of the
tube between graduations is 0.2 cm?. The ball and a part
of the tube contain air which is separated from the atmo-
sphere by a drop of water. At a temperature of 5°C the
drop of water arranges itself near the 20th graduation. The
drop sets itself at the 50th graduation in the room where
the temperature is being measured.
What is the temperature in the ropm? Neglect the change
in the volume of the vessel.
255. Air separated from the atnfésphere by a column of
mercury of length h = 15 cm is present in a narrow cylin-
drical tube soldered at one end. When the tube is placed
horizontally the air occupies a volume Vi = 240 mm3.
When it is set vertically with its open end upwards the.
volume of the air is V2 = 200 mm?.
What is the atmospheric pressure during the experiment?
256. A narrow cylindrical tube 80 cm long and open at
both ends is half immersed in mercury. Then the top of
the tube is closed and it is taken out of the mercury. A co-
lumn of mercury 22 cm long then remains in the tube.
What is the atmospheric pressure?

70 PROBLEMS
 
251. The piston in a gas—iilled cylinder is loosely fitted
against the wall of the cylinder and can slowly let the gas
go past. The volume-temperature curve for the gas at con-
stant pressure has the form shown in Fig. 89.
Use this curve to determine whether the amount of gas in
the cylinder has increased or decre-
V ased.
252. Plot the variation in the den-
/ sity of a gas with temperature at con-
7 stant pressure and the dependence of
the gas density on pressure at con-
7 stant temperature.
0 253. On the thermometric scale of
Fig. 89 the Russian Academician I. N. Delil
the boiling point of water corresponds
to zero and the melting point of ice to —150°.
What value f the temperature coefhcient of gas expan-
sion at constg pressure should be taken when temperature
is measured on Delil’s scale?  
254. A hollow ball·with a capacity o 100 cm? is fitted
with a long graduated tube. The internal volume of the
tube between graduations is 0.2 cm?. The ball and a part
of the tube contain air which is separated from the atmo-
sphere by a drop of water. At a temperature of 5°C the
drop of water arranges itself near the 20th graduation. The
drop sets itself at the 50th graduation in the room where
the temperature is being measured.
What is the temperature in the ropm? Neglect the change
in the volume of the vessel.  
255. Air separated from the atnfésphere by a column of
mercury of length h = 15 cm is present in a narrow cylin-
drical tube soldered at one end. When the tube is placed
horizontally the air occupies a volume Vi = 240 mm3.
When it is set vertically with its open end upwards the.
volume of the air is V2 = 200 mm?.
What is the atmospheric pressure during the experiment?
256. A narrow cylindrical tube 80 cm long and open at
both ends is half immersed in mercury. Then the top of
the tube is closed and it is taken out of the mercury. A co-
lumn of mercury 22 cm long then remains in the tube.
What is the atmospheric pressure?





CHAPTER II. HEAT AND MOLECULAR PHYSICS 71
257. The limbs of a U-tube are equal in length. One of
the limbs is soldered and contains a column of air 28 cm
high. The air is separated from the atmosphere by mercury
and its pressure is equal to the external pressure.
What will the height of the air column be in the soldered
limb if the second limb is filled with mercury to the top?
The external pressure is 76 cm Hg.
258. An open glass tube is immersed in mercury so that
an end of length li = 8 cm projects above the mercury. The
tube is then closed and raised 44 cm.
What fraction of the tube will be occupied by the air
after it has been raised? The atmospheric pressure is P:.
= 76 cm Hg.
259. A cylindrical glass is lowered upside down into
water and floats so that the inside of its base is at the same
level with the surface of the water in the vessel. The glass
weighs Q = 408 gf, the area of the
base is S = 10 cm“. The pressure of l
the air in the glgs before it is sub-
merged is P = 76 ‘cm Hg.
What part of the glass will be occu-
pied by the air after it is submerged?
260. A cylindrical vessel is half-filled
with mercury and then hermetically
sealed by a cover through which a siphon _
tube is passed. The height of the vessel Fig- 90
is 60 cm.
The siphon has been filled with mercury in advance,
has equal limbs andffghe end of one tube is located at
the bottom of the ves& (Fig. 90).
At what pressure in the vessel will the mercury cease to
flow through the siphon? By how much will the mercury
level then have dropped? The external pressure is 750 mm Hg.
261. A column of mercury of length h = 10 cm 1S con-
tained in the middle of a narrow horizontal tube soldered
at both ends. The air in both halves of the tube 1S under
a pressure of P0 =.- 76 cm Hg. _ _
What distance will the mercury column move 1f the tube
is placed vertically? The length of the tube is 1 m. ·
262. A cylinder closed at both ends is divided into two
equal parts by a heat-proof piston. Both parts of thé cyhn-
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72 PROBLEMS
der contain the same masses of gas at a temperature to =
-.=- 27°C and a pressure P0 = 1 atm.
What distance from the middle of the cylinder will the
piston be displaced if the gas in one of the parts is heated
to t .-= 57°C? What will be the pressure in this case in each
part of the cylinder? The length of half the cylinder is
I =·. CII].
263. A glass tube 15 cm long soldered at one end and
containing a certain amount of air is immersed in mercury
so that 10 cm of the tube projects above the
surface (Fig. 91). The level of the mercury
inside the tube at 0°C is 5 cm higher than
the mercury level in the vessel.
By how much should the temperature of
the air in the tube be increased for it to
occupy the entire volume of the tube? The
· atmospheric pressure is 75 cm Hg. The
mercury level in the vessel is invariable.
264. Calculate the vqlue of the constant
Fig_ 91 in the combined law of Boyle and Gay-Lus-
sac for one gram-molecule of gas in calo-
r`ies and in CGS units.
265. Two vessels of equal volume and weight are immer-
sed 1n water to e depth h, One of the vessels has an opening
at the bottom which admits water.
Is the same work required to immerse each of the cylin-
ders in the water?
266- OI19 gram-molecule of oxy n is heated at a con-
stant pressure from ()°C_ g
Wh&t_¤¤10unt of heat should b mparted to the gas to
double 1tS volume? The heat capacity of oxygen in these
conditions is Cp = 0.218 cal/g·deg.
_267. A gas is heated by 1°C in a cylinder Blitéd with a
piston. The weight of the piston is G and its area S. During
heating the gas does work to lift the piston. Express this
work: (a) 1n terms of the pressure and the change in volume
of the gas; (b) in terms of the constant R in the combined
equat1on of Boyle and Gay-Lussac. Disregard the pressure
of the outside atmosphere.
_ 268. A vertical cylinder with a base of area S = 10 cm?
IS filled with gas. The cylinder is fitted with a piston
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weighing G = 20 kgf which can move without friction.
The original volume of the gas is V0 = 11.2 l and the tem-
perature to = 0°C.
What quantity of heat is needed to raise the temperature
of the gas in these conditions by 10°C if the thermal capa-
city of this mass of gas with the piston secured in the ini-
tial position is CV = 5 cal/deg? Disregard the pressure of
the outside atmosphere.
269. Explain why a gas can only expand at constant
temperature if a certain quantity of heat is supplied to it.
270. A certain amount of gas initially occupying a vo-
lume V0 at a pressure P0 and a temperature To expands first
at constant pressure and then at constant temperature
to a volume V,.
In which of these two cases will the gas do more work?
271. A cylinder filled with gas is placed in a heat—proof
jacket.
How will the temperature of the gas change if the volume
of the cylinder is gradually increased?
16. Surface Tension
272. The Russian scientist M. V. Lomonosov recorded
the following results from his experiments on raising a liquid
in capillaries: "rise of liquids in a capillary tube to the
lines: water 26, alcohol 18, volatile al-
cohol of ammonium salt 33". One line=
Use these data to deiiermine the rela-
tionship between the sdiface tensions of
these substances. Find the radius of the —
capillary used by M. V. Lomonosov. l_
The surface tension of water is on = 70 *°
dyn/cm. The densities of both alcohols l
are the same and equal to 0.8 g/cm?. `
273. A capillary tube of radiusrand F. 92
height hi is connected to a broad tube as lg'
shown in Fig. 92. The broad tube is gra-
dually Elled with drops of water falling at equal intervals.
Plot the changes in the levels of the water in both tubes
with time and changes in the difference between these levels.
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Calculate the maximum water level in the broad tube and
the maximum difference in the levels. The surface tension
of water is oc.
274. The following design of a perpetuum mobile has
been suggested. A capillary of radius r is chosen which
allows water to rise to a height
;. h (Fig. 93). At a height hi,
g smaller than h, the capillary
is bent and its upper end is
§ made into a broad funnel as
§ 1 shown in the diagram. The
A 2 3 FV surface tension is enough to
2 raise the liquid to the height
hi and introduce it into the
funnel. The liquid in the
—__`_ broad part of the funnel deta-
Fig. 93 ches itself from its upper
surface and flows down unim-
peded. A water wheel can be installed in the path of the
drops falling back into the vessel, thus providing a perpe-
tuum mobile.
Will this perpetuum mobile actually operate? Find the
error in the reasoning above.
275. Will the results of measurements on the density
of liquids using a hydrometer be affected by the action
of surface tension? How will the position of the hydrometer
change if it is in water and several drops of ether are added
to the water? The surface tension of ether is smaller than
that of water.
276. A capillary tube with very thin walls is attached
to the beam of a balance which is then equalized. The lower
end of the capillary is brought in contact with the surface
of water after which an additional load of P = 0.135 gf
is needed to regain equilibrium.
Determine the radius of the capillary. The surface tension
of water is cx = 70 dyn/cm.
277. Explain the following experiment performed by
M. V. Lomonosov: "Mercury can be removed from a vessel
in twenty-four hours by using a sheet of lead folded into
a siphon and immersed with one end in the mercury."
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278. A rectangular wire frame with one movable side is
covered by a soap film (Fig. 94).
What force should be applied to the movable side to
counterbalance it? What work will be done if this side of the
frame is moved a distance S = 2 cm? What will be the
source of this work when the surface of the film is reduced
and into what kind of energy will the work be transformed?
The length of the movable side is l = 6 cm. The surface
tension of the soap film is on = 40 dyn/cm.
r t * 7*
ll
(l
/' ’
· ‘!
V mv .
Fig. 94 Fig. 95
279. A light open rigid paper frame as shown in Fig. 95
floats on the surface of water.
What will happen to the frame if some soap solution is
dropped inside it? What force will act on the frame and in
what direction will it act?
280. When some useless work is done it is commonly
said that it is the same as carrying water in a sieve.
When can water really be carried in a sieve without it
seeping through? What is the maximum height of the
water layer that can be carried in a sieve if the diameter of
the mesh is d = 1 mm? Can the water poured into a sieve
be drained over its edge? The surface tension of water is
ot = 70 dyn/cm.
281. Part of a capillary is lowered into a wetting agent.
Can the loss of weight of the capillary be calculated by
Archimedes’ law? What will the answer be in the case of
a non-wetting agent?
282. A capillary of radius r is lowered into a wetting
agent with surface tension on and density d.
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Determine the height ho to which the liquid will rise in
the capillary. Calculate the work done by surface tension
and the potential energy acquired by the liquid in the
capillary and compare the two. Explain the difference in
the results obtained.
283. In order to remove paraffine and other fatty spots
from fabric they are usually ironed hot through paper.
Why does paraffine or fat soak into the paper in this
case and not spread over the fabric?
l Should the paper used for ironing be
I sized or not?
_g___* M 284. In a device designed by Aca-
_,; demician Rebinder the surface ten-
sion is determined from the pressure
__ ` difference required to form a bubble
Fig, 96 of air at the end of a capillary im-
mersed in the liquid being investiga-
ted (Fig. 96).
Calculate the surface tension if the radius of the capillary
is r = 1 mm and the difference in the pressures during
bubble formation is AP = 14 mm of water column. The end
of the capillary is near the surface of the liquid.
285. The internal radius of one limb of a capillary U—tube
is ri = 1 mm and the internal radius of the second limb
is rz = 2 mm. The tube is filled with some mercury, and
one of the limbs is connected to a vacuum pump.
What will be the difference in air pressure when the
mercury levels in both limbs are at the same height? Which
limb of the tube should be connected to the pump? The
surface tension of mercury is 480 dyn/cm.
286. A long capillary tube of radius r = 1 mm open at
both ends is filled with water and placed vertically.
What will be the height of the column of water left in the
capillary? The thickness of the capillary walls is negligible.
287. A capillary tube sealed at the top has an internal
radius of r = 0.05 cm. The tube is placed vertically in
water, open end first.
_ What should the length of such a tube be for the water
IH it to rise in these conditions to a height h = 1 cm? The
Pressure of the air is P0 = 1 atm. The surface tension of
Water is oc = 70 dyn/cm.
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17. Humidity of Air
288. A test—tube of height h is filled to the top with water
and its open end is lowered into a glass of water.
At what temperature will the level of water move away
from the bottom of the test—tube? What will occur in the
test-tube if the water is further heated to 100°C? Disregard
the action of surface tension.
289. The temperature of the air is ti = 20°C and the dew
point tz = 8°C. Find the absolute and relative humidity of
the air if the elasticity of the saturated vapour pressure
290. In what conditions can the relative humidity dimi-
nish when the absolute humidity of the atmospheric air
increases?
291. Two vessels contain air saturated with vapour-
one at a temperature of 20°C and the `other at a temperature
of 10°C.
What amount of dew will be deposited when these two
masses of air are mixed if the volumes of the vessels are
the same and equal to 1 m3? Assume that within the chosen
range the saturated vapour pressure is proportional to the
temperature and equal to 9 mm Hg at 10°C and 17 mm Hg at
20°C.
Disregard heat losses due to the heat exchange with the
walls of the vessel during mixing.
292. A vessel contains air at a temperature of 10°C and
humidity of 60 per cent.
What will be the relative humidity of this air if it is
heated to 100°C and its volume is simultaneously decreased
to one third? The absolute humidity corresponding to the
saturated vapours at 10°C is 9.43 g/m3.
293. What amount of dew is deposited when a certain
volume of air is reduced to one quarter if the initial volume
of the air is 1 m3, the temperature 20°C and the humidity
50 per cent? The temperature is constant throughout.

CHAPTER 11. HEAT AND MOLECULAR PHYSICS 77
17. Humidity of Air
288. A test—tube of height h is filled to the top with water
and its open end is lowered into a glass of water.
At what temperature will the level of water move away
from the bottom of the test—tube? What will occur in the
test-tube if the water is further heated to 100°C? Disregard
the action of surface tension.
289. The temperature of the air is ti = 20°C and the dew
point tz = 8°C. Find the absolute and relative humidity of
the air if the elasticity of the saturated vapour pressure
290. In what conditions can the relative humidity dimi-
nish when the absolute humidity of the atmospheric air
increases?
291. Two vessels contain air saturated with vapour-
one at a temperature of 20°C and the `other at a temperature
of 10°C.
What amount of dew will be deposited when these two
masses of air are mixed if the volumes of the vessels are
the same and equal to 1 m3? Assume that within the chosen
range the saturated vapour pressure is proportional to the
temperature and equal to 9 mm Hg at 10°C and 17 mm Hg at
20°C.
Disregard heat losses due to the heat exchange with the
walls of the vessel during mixing.
292. A vessel contains air at a temperature of 10°C and
humidity of 60 per cent.
What will be the relative humidity of this air if it is
heated to 100°C and its volume is simultaneously decreased
to one third? The absolute humidity corresponding to the
saturated vapours at 10°C is 9.43 g/m3.
293. What amount of dew is deposited when a certain
volume of air is reduced to one quarter if the initial volume
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ELECTRICITY
18. Coulomb’s Law
When studying the fundamentals of electrostatics it
is especially important to master hrst Coulomb’s law for
calculating the forces produced by a system of electric
charges and, particularly, to understand clearly how the
principle of independent action of electric charges can be
used to solve problems.
The problems in this section and their solutions are pre-
sented so as to indicate the sequence in which this principle
can best be applied, especially when solving the problems
in Secs 19, 20 and 21. At the same time these problems
allow the reader to revise the methods commonly used for
finding the equilibrium of separate bodies and systems.
In solving the problems on calculation of electric
charges, pay attention to the stability of the equilibrium of
charges (for example, if the equilibrium of the charge q
in Problem 299 is stable with respect to the movement
along a straight line connecting all the three charges it
will be unstable with respect to motion in all the other
directions). This is a particular case of the general theorem
which states that it is impossible to attain a stable equi-
librium in a system of free electric charges.
294. How should Coulomb’s law be written in order
to obtain the force in kilograms if the charges are in cou-
lombs and the distances in metres?
295. Determine the force of electrostatic interaction
between the electron and the nucleus in a hydrogen atom.
The mean distance of the electron from the nucleus of the
atom is 1 >< 10*8 cm and the charge of the electron is e ==
= 4.8 X 10"1° cgs electrostatic units.
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296. An electron with a charge e and mass m rotates in
a circular orbit of radius r around a nucleus of charge Ze.
Determine the velocity of the electron in this orbit.
Perform a numerical calculation for a hydrogen atom.
297. The distance between two fixed positive charges
4e and e is l.
How should a third charge q be arranged for it to be in
equilibrium? Under what conditions will the equilibrium
of the charge q be stable and when will it be unstable?
298. Two free positive charges 4e and e are a distance a
apart.
What charge is needed to achieve equilibrium for the
entire system and where should it be placed?
299. A negative point charge 2e and a positive charge e
are faxed at a distance Z from each other.
l"'_'“?’i
-26* +Ie +7
1—<—————[————a·|
Fig. 97
Where should a positive test charge q (Fig. 97) be placed
on the line connecting the charges for it to be in equili-
brium? What is the nature of equilibrium of the test charge
with respect to longitudinal motions. Plot the dependence
of the force acting on this charge on the distance between
it and the charge —}—e.
300. Two identical balls each have a mass of 10 g. What
charges should these balls be given so that their interaction
equalizes the forces of universal gravitation acting between
them? The distance between the balls is large in comparison
to their radii.
301. Two small identical metal balls having positive
charges of 5 and 20 cgs electrostatic units are placed 10 cm
apart.
Will the force of interaction between the balls change
after they have been connected for a short time by a wire?
What will the charges on the balls be after this experiment?
302. The distance between two equal balls having unlike
charges is l :. 2 cm. The radii of the balls are much less
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than l. The attractive force between the balls is Fi = 4
dynes. After the balls have been connected by a wire and
the latter has been removed, the balls repel each other with
a force F2 = 2.25 dynes.
Determine the original charges on the balls.
303. A small cork ball with a mass m = 0.58 g is sus-
pended from a thread 10 cm long. Another ball is fixed at
a distance l = 10 cm from the point of
7 o suspension and at a distance l/2 from
\ the thread as shown in Fig. 98.
\ What should the magnitude of the like
L xf and equal charges on the balls be to de-
L \\ ( flect the thread through 30°?
_@‘___® 304. Two small equally charged con-
ducting balls are suspended from long
FY threads secured at one point. The
_ charges and masses of the balls are such
F*g· 98 that they are in equilibrium when the
distance between them is a = 10 cm
(the length of the threads L > a). One of the balls is then
discharged.
How will the balls behave after this? What will be the
distance b between the balls when equilibrium is restored?
305. The Russian professor Rikhman was the designer of
one of the world’s first electrometers. His device consisted
of a vertical metal bar at the top of which
was attached a linen thread that was de-
flected from the bar under the action of Z
an electric charge (Fig. 99). The readings
were taken on a quadrant graduated in deg- A
rees. The length of the thread is l and its
mass is m. Aa
What will be the charge when the thread .
of such an electrometer is deflected through Fig' 99
an angle ot. Make the following assum-
ptions: (a) the charge on the electrometer is equally
distributed between the bar and the thread; (b) the
charges are concentrated at point A on the thread and at
point B on the bar.
306. Two point charges with the same sign and magni-
tude q = 3.4 cgs electrostatic units are 17 cm apart.
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With what force and in what direction will these charges
be acting on a unit positive charge located 17 cm from each
of them? What is the magnitude and direction of this force
if the former two charges are unlike?
307. Four identical free positive charges e are located
at the four corners of a square of side a.
What charge should be placed at the centre of the square
to obtain equilibrium? Will this equilibrium be stable?
19. Electric Field. Field Intensity
The basic concept of an electric held and the quantities
that describe it is one of the most difhcult parts of the
curriculum but is something that must be thoroughly
mastered.
For this reason this section mainly concentrates the
simplest problems involving the application of the equa-
tion F = eE, on the distribution of charges on the surface
of conductors placed in an electric held and on the motion
of charged bodies under the action of the electric held
forces.
Most of the problems in this section are of a qualitative
nature and they are designed not simply to calculate the
forces but to illustrate the behaviour of charges in condu·
ctors under the influence of an external electric held and
also the nature of the changes that take place in a held
when conductors are introduced into it.
Special attention should be paid to the solutions of Pro-
blems 319-325 which show the simplest ways of calculating
the motion of bodies produced by an electric current.
308. Find the intensity of an electric held set up by a
point charge of one cgs electrostatic unit ata distance of
1 m from the charge. Express the intensity in the absolute
and practical electrical units.
309. Two equal like point charges of 2 cgs electrostatic
units each are situated a distance 2a = 100 cm apart.
Calculate the intensity and the potential at a point A
situated halfway between the two charges.
310. A charge q is placed on a metal wire ring of radius R.
Determine the intensity of the held set up by this charge:
6-1218
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82 PROBLEMS
(a) in the centre of the ring O (Fig. 100); (b) at the point A
lying on the axis of the ring at a distance R from the centre O.
311. A small metal ball is brought into contact alterna-
tely with points A, B and C of the charged body shown
in Fig. 101. After each contact the charge of the ball is
determined approximately by touching it against an ele-
ctroscope.
' ,1 / .-
( Tr" _. ,——————...,..-

Fig. 100 Fig. 101
Will the leaves of the electroscope be deflected similarly
in these three cases?
312. An uncharged conducting ball is placed in the
uniform electric field of a plane capacitor. How will the
form and the arrangement of the lines of force in the field
change after the ball has been introduced and what causes
this change in the field? Draw the system of equipotential
surfaces. Show what induced charges will appear on the ball
and where they will appear.
313. How can a positively charged ball be used to ele-
ctrify two other balls —one positively and the other negati-
vely —without reducing its own charge?
314. A positively charged ball is placed into a hollow
conductive uncharged sphere. Indicate: (a) the location
and the kind of the electric fields produced; (b) the charges,
if any, on the sphere; (c) the changes in the electric field
when the ball moves inside the sphere and where these chan-
ges occur; (d) the change in the field inside and outside the
sphere if the ball is fixed and a charged body is brought
close to the sphere from the outside.
315. A ball of charge e is placed in a hollow conductive
uncharged sphere. After this the sphere is connected with
earth for a short time and the ball is then removed from
the sphere. The ball has not been brought into contact
with the sphere.
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What charge will the sphere have after these operations?
Where and how will this charge be distributed? What will
be the nature of the field and how will it be located?
316. Two large metal plates tightly fitted against each
other are placed between two equal and unlike point charges
perpendicular to the line connecting them (Fig. 102).
What will happen to the plates if they are released?
What changes will occur in the electric Held in this case?
Draw the lines of force of the changed field.
1 2 3 4
+e —e
·l
6
Fig. 102 Fig. 103
317. The plates considered in the previous problem are
introduced into a field so that they do not touch each other
and are then drawn a certain distance apart. Draw the
distribution of the lines of force of the electric held after
the plates are drawn apart and show how the induced charges
are distributed in them.
318. Two parallel metal plates are inserted at equal
distances into a plane capacitor as shown in Fig. 103.
Plates 1 and 4 are connected to a battery with an electro~
motive force ES.
(a) What are the potentials of each of the four plates?
(b) How will the potentials of plates 2 and 3 and the
intensities of the helds in each of the three spaces change
after plates 2 and 3 have been closed for an instant by a wire?
What will happen in this case to the charges on plates 1
and 4?
(c) Will there be charges on plates 2 and 3 before and
after shorting?
6*
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84 PROBLEMS p
319. A ball has a mass of 10 g and a charge of 5 cgs elect-
rostatic units of electricity.
With what acceleration will the ball move in a uniform
electric field of intensity 300 V/cm?
320. The control plates in a cathode-ray tube form a plane
capacitor. The distance between the plates is d = 10 mm
and the length of the plates is l = 5 cm. The plates receive
a direct voltage of 50 V. An electron moves into the capaci-
tor with a velocity v = 20,000 km/s parallel to the plates
at a distance of 5 mm from the lower plate.
How will the electron move inside the capacitor? What
distance h from the original position will the electron be
displaced by the time it leaves the capacitor?
0
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Fig. 104 Fig. 105
321. A speck of dust of mass 10‘° g and charge 9.60 X
X 10* cgs electrostatic units is located between the hori-
zontal plates of a charged plane capacitor.
What is the intensity of the field in the capacitor if the
weight of the speck of dust is equalized by the action of
the electric field force on it?
322. A small metal ball of mass m (Fig. 104) is suspended
from a thread of length l between the plates of a large plane
capacitor.
How will the period of oscillations of such a pendulum
change if a charge —\—e is placed on the ball and the upper plate
of the capacitor is charged: (a) positively; (b) negatively?
323. A ball of mass m = 1 g is suspended from a thread
in a capacitor (see the previous problem). In the absence of
any charges the period of oscillation of the ball is T,=
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-.=—. 0.628 s. After the capacitor and the ball are charged the
period of oscillation becomes/T2 = 0.314 s,
What force has the electric field of»the capacitor exerted
on the ball? What is the length of the thread from which the
ball is suspended? Determine the period of oscillation if
the sign of the charge on the ball is reversed.
324. A metal ball on a long thread`is placed between the
plates of .a capacitor as shown in Fig. 105.
How will the oscillations of this pendulum change if the
ball and the plates of the capacitor are charged? The pendu-
lum swings in a plane perpendicular to the plates.
325. What is the charge on the Earth if the intensity of
the electric field near the terrestrial surface is 1.30 V/cm?
Consider the Earth as a sphere of radius 6,400 km.
20. Work Done by Forces in an Electrostatic Field.
Potential
In the study of the potential of an electrostatic Held the
student comes across one of the·most important properties
of an electric f1eld—the fact that the work done by the Held
forces is independent of the path. Since it is usually diffi-
cult to get into the habit of using this property correctly
some of the problems in this section are intended to illust-
rate the meaning of this fundamental property of an electro-
static field and indicate how best to apply it when solving
problems.
A series of problems at the beginning of the section require
the use of the independent action of electric fields to calcu-
late the potentials of separate points in a field and the work
done when charges move in a field.
ln analyzing the results of the solution of Problem 336 and
the problems that follow it attention should be paid to the
best method of using the relative arrangement of the lines of
force and the equipotential surfaces of an electrostatic field
when carrying out the simplest calculations. The problems in
this section are recommended for discussion amongst senior
grades in secondary schools.
326. The distance between the plates of a capacitor is
d = 5 cm, and the. intensity of the electric field in the capa-
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citor is constant and equal to E = 2 cgs electrostatic units.
An electron moves along one of the lines of force from one
plate of the capacitor to the other. The initial velocity of
the electron is zero.
What velocity is imparted to the electron en route skiue to
the work done by the electric field forces?
327. The intensity of the electric field in a plane capacitor
is 2 cgs electrostatic units and the potential difference
between the plates is 3,000 V
What is the distance between the plates of the capacitor?
328. The radius of a charged metal sphere R is 10 cm and
its potential is 300 V Find the charge density on the surface
of the sphere.
329. Two like point charges of 5 cgs electrostatic units
each are at some distance from each other.
Determine the potential at a point 10 cm from each of the
charges.
How will this potential change if the space around the
charges is filled with a dielectric of permittivity e = 2?
330. The potential at a point A in an electric field is
VA = 300 V and at point B, VB = 1,200 V.
What work must be done to move a positive charge of
3 >< 10*8 coulomb from point A to point B?
331. Two identical metal balls of radius r = 2.5 cm are
at a distance a = 1 m from each other and are charged, one
with a potential V, = -1- 1,200 V and the other with a po-
tential V2 = —- 1,200 V
What are the charges qi and q2 on these balls?
332. Two metal concentric spheres have radii a and b.
There is a charge q on the inner sphere and a charge Q on
the outer sphere.
Find the expressions for the intensity and the potential of
the field outside the spheres and inside the first and second
sphere.
333. A charge is uniformly distributed over the surface
of two) concentric conductive spheres (with the same den-
sity on
What is the magnitude of this charge if a quantity of work
of 10 ergs is required to transfer one positive unit of electri-
city from infinity to the common centre of the spheres? The
radii of the spheres are 5 and 10 cm.
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What are the charges qi and q2 on these balls?
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334. The distance between the plates of a charged plane
capacitor disconnected from the battery is d == 5 cm and
the intensity of the field in it is E = 300 V/cm. An uncharged
metal bar 1 cm thick (Fig. 106) is intro-
duced into the capacitor parallel to its d
plates.
Determine the potential difference
between the plates of the capacitor be-
fore and after the bar is introduced.
335. The test ball in Problem 311 is
connected by a wire to an electroscope
and passed around the entire contour
of the body (Fig. 101).
Will the readings of the electroscope Fig- 106
change in this case when it moves from
point A to points B and C?
336. The equipotential surfaces of a certain field are
shown in Fig. 107. It is known that Vi > V2. Use this pat-
tern to reproduce approximately the lines of force of this
field and indicate their direction.
V, 1 ‘;·
+ -—
+ .....
% it D :
/5 + -
*9 "' "‘
Fig. 107 Fig. 108
Determine the region in which the intensity of the field
is highest. _
337. The intensity of an electric field inside a capacitor
is E.
Calculate the work needed to move a charge q in a closed
rectangular circuit (Fig. 108).
338. Use the solution of the previous problem to_prove
that it is impossible to produce an electric field in which all
the lines of force would be parallel straight lines and the
density of their distribution would constantly increase in
a direction perpendicular to the lines of force (F1g._ 109).
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339. Prove that if the lines of force are shaped like arcs of
concentric circles with their centre at point O in a certain
section of a field (Fig. 110) the intensity of the Held in this
section should at each point be inversely proportional to
its distance from point O.
_)/"TL.
x\ I
_)/$9.
———-——-——>- fi
x x

-·—-‘—’ yr`;
_________ _)i·7’\

Fig. 109 Fig. 110
21. Electric Field in a Dielectric
340. A charged metal ball is surrounded by a thick sphe-
rical layer of a dielectric. Draw the pattern of the lines of
force of an electric field inside and outside the dielectric.
Indicate why the electric field changes at the boundary of
the dielectric.
341. The radius of a metal ball is 5 om, the thickness of
the spherical layer of a dielectric surrounding the ball is
5 cm, the permittivity of the layer is e = 3 and the charge
of the ball, q = 10.8 cgs electrostatic units.
Calculate the intensity of the field at the points lying
a distance r, = 6 cm and rz = 12 cm from the centre of
the ball.
342. The reduction in the intensity of an electric field
when a charged body is immersed in a dielectric can be
explained by the appearance of polarizing charges in the
dielectric near the surface of the charged body which screen
the action of the charges of the body with their field.
Determine the magnitude and the sign of such a polarizing
charge and the density of its distribution if a metal ball of
radius R and charge q is inside the dielectric of permittivi—
Y e.
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CHAPTER III. ELECTRICITY gg
343. Charged balls suspended by long threads as in
Problem 304 are placed into transformer oil. The density of
the balls d is greater than that of the oil do.
Find the distance b between the balls after they have
been immersed in the oil. The permittivity of the oil is e.
22. Capacitance and Capacitors
One of the most difficult problems concerns the relation—
ship between the magnitude of charges on capacitor plates
and the field intensity in a capacitor. It is also difficult to
determine how the charges on the plates and the forces of
interaction between bodies change when these bodies (or
a capacitor) are placed in media with various dielectric
properties.
As regards the change of interaction of two charged bodies
immersed in a dielectric when the charges of these bodies
are invariable or when their potentials are kept the same,
students sometimes think that this interaction decreases in
all conditions in proportion to the permittivity of the
medium.
In order to avoid such misconceptions the student should
carefully consider the physical meaning of capacitance as
a quantity which simultaneously takes into account the
effect of the shape, dimensions and position of a body and
the properties of the medium on the relationship between
the potential and the charge of the body. Proper attention
should also be paid to getting a mental picture of the
changes in an electric field when a body is placed in various
media and to the dependence of these changes on the
conditions in which the media are changed.
The first few problems in this section consider those cases
in which an increase in the permittivity of a medium causes
the force of interaction between the charged bodies to
increase at the same time.
When analysing the solutions of Problems 344-346, follow
carefully the change in the magnitude of charges and the
field intensity after bodies have been immersed in a dielect-
ric under various conditions.
The end of the section offers several problems on the
calculation of the interaction of capacitor plates and the
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90 PROBLEMS

work needed to draw the plates apart. Although not within
the scope of the school curriculum, these problems allow
the student to get a much deeper insight into the processes
occurring in a capacitor. These problems are recommended
for discussion in extracurricular circles.
In Problem 354 pay attention to the changes in the dis-
tribution of charges for different methods of capacitor con-
nection.
344. A plane capacitor is placed in a glass vessel and
connected to a storage battery as shown in Fig. 111. Switch A
is closed. The e.m.f. force of the battery is 6 = 12 V, the
area of the capacitor plates S = 100 cm2
8 and the distance hetwen the plates
l——|]l d = 1 mm. Determine the magnitude of
the charges across the capacitor plates
A in the following two cases:
` (a) Switch A is opened and then the
vessel is filled to the top with transfor-
mer oil of permittivity e == 2.2.
gig; (b) The vessel is fnrst filled with oil
§§§ and then switch A is opened.
Show how the intensity of the electric
field will change in the capacitor in these
Fig Mi two cases when the oil is poured in.
' 345. Two small charged bodies in-
teract in air with a force F,.
What will the force of interaction between these bodies be
after they are placed in a dielectric of permittivity c if their
potentials are kept the same as they were in air.
346. Two small charged balls permanently situated a large
distance apart are placed consecutively in a number of media
with increasing permittivities. The magnitude of the charges
of the balls is then kept constant in one series of experiments
while the potential difference remains the same in the other.
How will the force of interaction of the balls change as the
permittivity increases in these cases?
347. A ball A of radius 5 cm has a charge qi = —l- 20 cgs
electrostatic units of electricity and a ball B of radius 10 cm
has the same charge q2 = A- 20 cgs electrostatic units. The
balls are connected by a wire.
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CHAPTER 111. ELECTRICITY Q1
In what direction will the charges move along the wire?
What quantity of electricity will be transferred from one
ball to the other? What will the common potential and the
charges of the balls be after connection? The balls are a long
way apart.
348. A capacitor of 3 pF is charged to a potential differ-
ence of 300 V, and a capacitor of 2 pF to 200 V. Both charged
capacitors are connected in parallel by the like poles.
What potential difference will be set up on the plates of
the capacitors after connection?
349. After charging the capacitors in the previous pro-
blem their plates charged with unlike charges are connected.
What quantity of electricity will be transferred during
connection and from what capacitor will this take place?
350. Identical charges e = 2 >< 10"’· cgs electrostatic
units are put on mercury drops of radius r = 0.1 cm. Ten
such drops merge into one large drop.
What is the potential of the large drop?
351. Three capacitors of capacitance 0.002, 0.004 and
0,006 p.F are connected in series.
Can a potential of 11,000 V be applied to this battery?
What voltage will be received by each capacitor in the bat-
tery. The puncture voltage of each capacitor is 4,000 V.
352. Calculate the capacitance of a capacitor (see Problem
334) with a metal bar inserted into it if the area of each
plate of this capacitor is S = 100 cm?
and all the free space in the capacitor
is filled with kerosene (s = 2.1).
Will the capacitance of the capa-
citor be changed if the bar is moved
parallel to itself from one plate to the
other?
353. In a concentric-shape capaci— /___ , ·~
tor, the external and internal spheres
are alternately connected to earth Fig_ 112
(Fig. 112).
Will the capacitance of this capacitor be the same in these
two cases?
354. The charges on each plate of a plane capacitor are
acted upon by the electric field set up by the charges on the
other plate. Theoretical calculations show that the intensity
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of such a field set up by the charges of one plate in the capa-
citor is equal to
E = 2n -g-
where Q is the charge on the plates and S is the area of each
late.
P If Q and S are known, determine the force with which the
plates of the plane capacitor will be mutually attracted.
What work is needed to draw the capacitor plates apart by
a distance d. Express this work in terms of the capacitance
of the capacitor and the potential difference and in terms
of the capacitance and the charge on the plates.
355. Find the charge density on the plates of a plane
capacitor if its capacitance is 100 cm, the distance between
the plates 2 mm and if the
plates are mutually attracted
A by a force of 40 gf.
Note. See Problem 354.
356. One of the plates of a
plane capacitor is suspended
1 from the beam of a balance
(Fig. 113). The distance bet-
ween the capacitor plates is
lid d = 5 mm and the area of
the plates is 628 cm?.
Fig 1.1.3 What is the potential dif-
` ference between the capaci-
tor plates if a weight P = 0.04 gf has to be placed on the
other pan of the balance to obtain equilibrium?
Note. See Problem 354.
357. The plates of a plane capacitor are first drawn apart
all the time being connected to a voltage source and then
being disconnected after receiving the initial charge.
In which of these two cases is more work required to draw
the plates apart?
Note. See Problem 354.
358. A plane air ·capacitor is charged to a certain pot-
ential difference. A dielectric bar is put into the capacitor.
The charge on the bar must then be increased three times
to restore the former potential difference.
Determine the permittivity of the bar,
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23. The Laws of Direct Current
This section requires special attention when solving pro-
blems involving the application of Ohm’s law to an electric
circuit containing several sources of e.m.f., and also the
problems on current intensities in branched circuits and in
the sections of a circuit containing the sources of e.m.f.
The errors in these problems usually occur because students
confuse the signs ,of e.m.f. acting in a circuit and the direc-
tions of the currents and the electric field forces when writing
the equations of Ohm’s law.
Serious errors are also made when students forget that
the intensity of current flowing in a section of a circuit with
an acting source of e.m.f. is determined by the joint action
of the electric potential difference at the ends of the section
and the electromotive force of the source inside the section.
For example, when calculating the current flowing through
a storage battery of e.m.f. 8 and resistance R when it is
charged from the mains having potential V, it is a common
error to determine the current from the equation IR = V,
frequently disregarding the proper equation IR = V — E.
Errors are frequently caused by an inability to calculate
the effect of the internal resistance of e.m.f. sources on the
general functioning of the entire circuit. A number of pro-
blems in this section (for instance, 383, 385, 386, 392-395,
etc.) are included to clarify this very point as well as the
question of the best conditions for the operation of current
sources.
When solving most of the problems in this section one
should watch how the distribution of currents and potentials
changes when separate resistances or sources are introduced
or replaced in the circuit. It will be difficult to solve such
problems as, for example, 379 and 380 if you do not know
the relationship between the distribution of potentials and
currents in branched circuits.
It is also important to show how and in what conditions
one and the same measuring instrument can be utilized for
various purposes (for example, the use of an ammeter as an
ohmmeter, or a milliammeter as a voltmeter), and specify
the most typical errors that can be made during measurement
i¤ various conditions (Problem 375). For this reason, Some
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problems at the beginning of this section are based on the
theory and operation of electrical measuring instruments.
359. The resistivity of copper is 1.7 >< 10‘° ohm·cm.
What is the resistivity of a copper wire 1 m long and 1 mm?
in cross section?
360. One of the first attempts to get a standard unit of
measurement for the resistance of conductors in all laborato-
ries was made by the Russian Academician B. S. Yakobi.
Yakobi’s unit of resistance is equal to the resistance of
a copper wire 6.358 feet long (1 ft = 30.5 cm) and
0.00336 in in diameter (1 in:-2.54 cm).
Express Yakobi’s unit of resistance in ohms.
361. The resistance of a constantan wire is 10 ohms.
Express this resistance in the units of the cgs electrostatic
system.
362. How will the resistance of a telegraph line change
from winter to summer if it is made of an iron wire 10 mm?
in cross section? The temperature changes from —30°C to
—l—30°C. In winter the length of the wire is 100 km, the resi-
stivity of iron po = 8.7 >< 10‘6 ohm ·cm and the temperature
coefficient of resistance 6 = 6 >< 10*3 deg*1.
How will the result change if the elongation of the wire on
heating is taken into account? The coefiicient of linear expan-
sion of iron is oc : 12 >< 10"* deg‘1.
363. An electric lamp with a tungsten filament is rated
at 220 V and consumes 40 W.
Determine the length of the filament in this lamp if its
diameter is 0.01 mm. When the lamp burns the absolute
temperature of the filament is 2,700°. The resistivity of
tungsten which at O°C is po == 5 >< 10** ohm ·cm increases in
proportion to the absolute temperature of the filament.
364. Determine the intensity of the current flowing in the
electric lamp in the previous problem immediately after it
is switched on. How much bigger will this current be than
the current when the lamp burns normally?
365. A plane capacitor having plates of area S separated
by a distance d is first filled with a dielectric of permittivity
e and then with an electrolyte of conductivity R.
Find the ratio between the capacitance of the capacitor in
the first case and its conductivity in the second.
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366. In his experiments on the thermal effect of current
the Russian Academician H.F.E. Lenz* assumed as a unit
of current the intensity of that current which would evolve
41.16 cm? of detonating gas in one hour at a pressure of
760 mm Hg and a temperature of 0°C when this current was
passed through acidified water.
Express Lenz’s unit of current in amperes. The density of
oxygen at a pressure of 760 mm Hg is d = 0.00143 g/cm?.
367. What should the resistances of the sections of a rheo-
s-tat R,. R2 and R3 be (Fig. 114) in order to change the cur-
rent passing through an instru- I?
ment of resistance R0 = 30 ohms Z
by 1 A when the rheostat slide AQ
is shifted from one contact to /1:,
another. The circuit is powered
by a source of 120 V ¤___._../
368. It is required to measure
the resistance of a circuit opera- V
ting at 120 V. There is only
one galvanometer with a re- /70
sponse of 10‘5 A per division.
How should the galvanometer
be cut in to operate as an ohm- Fig. 114
meter? What minimum resistance
of the circuit can be measured with such a galvanometer
if its full scale has 40 divisions? Construct the entire scale
of such an ohmmeter in ohms per division. Disregard the
internal resistance of the instrument.
369. A certain circuit with resistance R = 100 ohms is
powered by a direct-current source. An ammeter with an
internal resistance R0 : 1 ohm is cut into the circuit to
measure the current.
What was the current in the circuit before the ammeter
was cut in if the ammeter shows 5 A?
370. What must the resistance of a shunt to a galvanome-
ter be to reduce the response of the latter by 20 times? The
internal resistance of the galvanometer is R0 = 950 ohms.
* Heinrich Friedrich Emil Lenz (1804-1865) is famous for his law
on the thermal effect of current and his rule applied to the phenomena
of electromagnetic induction underlying today the theory of electric
phenomena.
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371. A milliammeter with a 20 mA scale is to be used as
an ammeter to measure current up to 5 A. Calculate the
resistance of the shunt if the internal resistance of the mil-
liammeter is 8 ohms.
372. A sensitive milliammeter is utilized as a voltmeter.
Determine the scale division of this instrument in volts if
its internal resistance is 500 ohms and each division of the
scale corresponds to 1 mA.
373. A voltmeter of internal resistance 400 ohms con-
nected for measurement to a section of a circuit with a re-
sistance of 20 ohms shows a reading of 100 V.
R
Fig. 115
What is the error in the readings of the voltmeter if the
current in the circuit remains constant before branching?
374. The circuit shown in Fig. 115 is used to measure the
resistance R. An ammeter shows a current of 2 A and a volt-
meter a potential difference of 120 V.
b 0
0 0
3 0 R E R;)
bf g'
Fig. 116a Fig. 116b
What is the magnitude of the resistance R if the internal
resistance of the voltmeter is R0 = 3,000 ohms? How large
will the error in measuring R be, if the resistance of the
voltmeter is assumed to be infinitely large in calculations?
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375. A resistance R is calculated from the readings of
a voltmeter and an ammeter connected as shown in Fig. 116a
and 116b without any corrections being introduced for the
internal resistances of the instruments.
Find the error which will be committed in measuring
a resistance R ·-= 1 ohm using these circuits if the internal
resistance of the ammeter is Ra = 0.1 ohm and of the volt-
meter Rv = 1,000 ohms. What will the error be in measu-
ring a resistance R = 500 ohms? Which circuit should be
used to measure low and high
resistances? _ //0 1/_
376. A certain circuit with
aresistance R, = 10,000 ohms
is powered from a potentio— 3000*9
meter of resistance R0 = A 0
= 3,000 ohms (Fig. 117).A 5
voltage V = 110V is sup-
plied to the potentiometer. /0000.0
Determine the voltage V fed
into the circuit when the slide Fi 1 17
is in the middle of the poten- g'
tiometer.
377. A 60 W lamp burns in a room and an electric heating
appliance of 240 W is switched on. The voltage in the mains
is 120 V. The resistance of the wires connecting the electrical
devices in the room with the mains is R0 = 6 ohms.
By how much will the voltage supplied to the lamp be
changed when the heating appliance is switched on?
378. A room is illuminated by n electric lamps each of
B D which consumes a current I 0.
The distance of the lead-in
from the mains cable is l met-
res, the resistivity of the wires
_ ir
Determine the minimum
A 0 permissible cross section of the
Fig. 118 wires if the voltage loss in the
line should not exceed V, volts.
379. Two conductors AB and CD are connected to the
branches of an energized circuit (Fig. 118). The position of
the points A, B, C and D is selected in a s-uch a way that no
7-1218
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current flows along these conductors. After that the two
bridges are connected by a wire EK.
Will current flow in this case in the wire EK, and in the
conductors AB and CD? What will happen to the potentials
A at the points A, B, C and D?
What will be the potentials at
the points E and K?
380. By mistake, a galvano—
,/· meter and a switch were cut
· into the circuit of a bridge as
shown in Fig. 119.
How can the balance of the
bridge be established by observ-
III I I III III I ing the readings of the galva-
nometer when the switch is
0 closed and opened?
381. In the system of electric
Fig. 119 units derived by Academician
Lenz, the unit of e.m.f.
is that e.n1.f. which generates a current equal to Lenz’s
unit when the resistance of the circuit is equal to one of Ya-
kobi’s units (see Problems 360 and 366). Convert Lenz’s
unit for e.m.f. to volts.
382. The e.m.f. of a storage battery is 6 V When the
battery is connected to an external resistance of 1 ohm it
produces a current of 3 A.
What will the current be when the battery is short-
circuited?
383. An electric lamp of 110 V and 60 W is connected to
a dry 120-volt storage battery. The internal resistance of the
battery is 60 ohms.
Will the lamp burn at full intensity with this kind of
connection?
384. What is the internal resistance of a storage battery
if it produces a current of 1 A when the resistance of the
external circuit is 1 ohm and a current of 0.5 A when the
resistance is 2.5 ohms?
385. In order to determine the e.m.f. of a storage battery
it was connected in series with a standard cell to a certain
circuit and a 0.2-A current I , was obtained. When the storage
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battery is connected to the same circuit Opposite to the
Standard cell a 0.08-A current I 2 flowing in the External
circuit from the positive pole of the Storage battery was
obtained. What is the e.m.f. of the storage battery? The
e.m.f. of the standard cell is $2 = 2 V
386. What should the e.m.f. of the storage battery in
Problem 385 be to obtain a 0.08-A current flowing in the
external circuit from the negative to the positive pole of
the storage battery when it is out in the same direction as the
standard cell?
387. The e.m.f. of a storage battery is 2 V, its internal
resistance 0.4 ohm and the resistance of the external circuit
1 ohm. Determine the potential diffe- 8
rence across its terminals. ’
388. A standard cell $1, a potenti-
ometer witha resistance R = 10 ohms,
a storage battery with an unknown 5
e.m.f. $2 and a galvanometer G are A
connected as shown in Fig. 120.
Indicate the position of the slide A
on the potentiometer at which no cur- 8
rent will pass through the galvano- ’
meter. Determine the e.m.f. of the Fig- 120
storage battery if the current ceases
to flow through the galvanometer when the resistance in the
section of the potentiometer AB = 9 ohms. In this case
the cell $1 produces a potential difference V0 = 2 V at
the ends of the potentiometer.
389. In the circuit in the previous problem (Fig. 120)
the potentiometer has a scale 50 cm long with millimetre
divisions, the response of the galvanometer is 10*4 A per
division, and the internal- resistance of the storage battery
is r -:- 0.5 ohm.
What should the resistance of the galvanometer be to
detect the disturbance of equilibrium when the slide is
shifted from the position of equilibrium by one division of
the potentiometer scale?
390. With the external circuit cut in, the potential diffe-
rence across the poles of a storage battery is equal to 9 V
and the current in the circuit 1.5 A.
What is the internal resistance r of the storage battery
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and the resistance of the circuit R? The e.m.f. of the bat-
tery is 15 V.
391. Two identical storage batteries having e.m.f.s of
1.8 V and the same internal. resistances are connected as
shown in Fig. 121.
Determine the potential difference which will be estab-
lished between points A and B. Disregard
the resistance of the connecting wires.
392. A certain circuit with a resistance
A B R is supplied with power simultaneously
from N identical storage batteries.
At what internal resistance of the sto-
rage batteries will the current in the cir-
_ cuit be the same when they are connected in
F'g· 121 series and in parallel?
393. How many 100 V, 50 W electric
lamps connected in parallel can burn at full intensity when
supplied from a storage battery- with an e.m.f. 3 = 120 V
and internal resistance r == 10 ohms?
394. How many storage batteries of e.m.f. 2 V and inter-
nal resistance 0.2 ohm should be connected in series to obtain
a current I = 5 A in the external circuit with a poten-
tial difference of V = 110 V across the poles of the bat-
tery?
395. When the resistance of the external circuit is
1.0 ohm the potential difference across the terminals of a sto-
rage battery is 1.5 V When the resistance is 2 ohms the
potential difference increases to 2 V
Determine the e.m.f. and the internal resistance of the
storage battery.
396. A storage battery of e.m.f. 6 V and internal resis-
tance r = 1.4 ohms supplies power to an external circuit
consisting of two parallel resistances of 2 and 8 ohms.
Determine the potential difference across the terminals of
the storage battery and the currents in the resistances.
397. An external circuit with a resistance 0.3 ohm is po-
wered by six storage batteries each of.e.m.f. 2 V and internal
resistance 0.2 ohm. The storage batteries are connected as
separate groups in series and the groups are then connected
in parallel.
What method of connecting the storage batteries in such
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groups will provide the highest current in the circuit?
What will this maximum current he?
398. A circuit with an external resistance R is powered by
a storage battery consisting of N cells. The e.m.f. of each
cell is $0 and the internal resistance is ro. The storage batte-
py is composed of identical groups connected in series. In
turn, the groups consist of elements connected in parallel.
Find the number of the groups n and the number of the
cells m in each group for which the maximum current will be
observed in the circuit.
399. A current of 8 A is required in a circuit with a re-
sistance of 5 ohms.
What is the minimum number of storage batteries needed
to provide this current and how should they be connected
into a compound battery if the e.m.f. of each battery is 2 V
and the internal resistance 0.5 ohm?
400. A storage battery is connected to the mains for
charging with voltage of 12.5 V (Fig. 122). The internal
resistance of the storage battery is 1 ohm.
/25 V
8:
ii]
Fig. 122 Fig. 123
What is the e.m.f. of this storage battery if a current
of 0.5 A flows through it during charging?
401. A storage battery discharged to 12 V is connected
for charging to 15—volt mains.
What auxiliary resistance should be connected to the
circuit so that the charging current does not exceed 1 A?
The internal resistance of the storage battery is 2_ ohms.
402. A dynamo with an e.m.f. E1 = 120 V and an
internal resistance r = 0.5 ohm, and a storage battery with
an e.m.f. gz = 110 V are connected to an external resistance
R as shown in Fig. 123.
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At what maximum value of R will no current pass through
the storage battery? How will the battery operate when the
resistance R is larger or smaller than the calculated value?
403. The e.m.f. of a storage battery is $1 = 90 V before
charging and $2 = 100 V after charging. When charging
began the current was 10 A.
What is the current at the end of charging if the internal
resistance of the storage battery during the whole process
of charging may be taken as constant and equal to 2 ohms
and the voltage supplied by the charging plant as direct-
current voltage?
24. Thermal Effect of Current. Power
Even if the reader is well versed in the Joule-Lenz law,
he may sometimes fail to find the proper form of writing
this law when solving some problems. For example, when
solving Problem 411 on heating water in an electric kettle
heater with two coils, students frequently forget that the
voltage at the ends of the coils remains constant whatever
their method of connection and they attempt to obtain the
required results by applying the formula Q = 0.24 I2Rt
instead of the more convenient formula Q = 0.24 Egt.
In analysing the solutions to the problems in this sec-
tion it is worth considering the features of each electric
circuit to select the most convenient form for writing the
J oule—Lenz law, noting the difference in the physical meaning
of the forms of writing this law.
As we know the work done by the forces of an electric
field in a given section of a circuit when a current is passed,
is determined by the ratio A = I Vt while the amount of
heat liberated in this section can be found from the equation
Q = I2Rt. If the section of the circuit being considered
does not contain any sources of e.m.f. all the work done
by the electric field forces is wholly expended on liberating
Joule heat and both ratios produce the same results. If
a source of e.m.f. is present inside this section some of
the work done by the electric field forces is expended to
overcome these electromotive forces and the relationships
mentioned above yield different results.
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Since the work done by the current in a section of a cir-
·cuit having a source of e.m.f. is not included in the school
curriculum the difference in the physical meaning of the
formulas A = I Vt and Q = I 2Rt usually escapes the atten-
tion of the student and he encounters serious difficulties
in solving problems such as 409 and 410. Before solving
problems of this kind refresh your knowledge of the work
done by electric field forces and the thermal action of
current.
A number of problems in this section (for instance, 406-
408, 416, 417, etc.) are intended to draw the attention of
the student to the nature of the dependence of the efficiency
and useful power of current sources on the ratio between the
resistance of an external circuit and the internal resistance
of a source. This dependence is not always clear to some
pupils who thus fail to give exhaustive answers to questions
requiring calculation of the most favourable conditions
for operation of current sources.
404. In one of his experiments on the thermal effect of
current Academician Lenz heated 118 g of the alcohol
with a current of 15.35 Lenz’s units (see Problem 366).
Determine how long it took to raise the temperature of
the alcohol by 1° if the resistance of the coil is 35.2 Yako-
bi’s units (see Problem 360). The specific heat of the alcohol
is 0.58 cal/g·deg. Disregard heat losses.
405. Use the data from the previous problem to calcu-
late the time needed to heat the alcohol by 1°C with a cur-
rent of 1 A and with a coil resistance of 1 ohm.
406. The coil of a heater has a resistance of 5 ohms and
is supplied from a current source of internal resistance
20 ohms.
What should be the resistance of the shunt in the heat-
er to reduce the amount of heat liberated in the heater to
one ninth of the value without a shunt?
407. A storage battery of e.m.f. 12 volts and internal
resistance r = 0.8 ohm supplies in turn external circuits
rated at 0.4, 0.8 and 2 ohms.
Calculate for each of these three cases the useful power
supplied by the battery and its efficiency. Explain the
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the student to the nature of the dependence of the efficiency
and useful power of current sources on the ratio between the
resistance of an external circuit and the internal resistance
of a source. This dependence is not always clear to some
pupils who thus fail to give exhaustive answers to questions
requiring calculation of the most favourable conditions
for operation of current sources.
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the alcohol by 1° if the resistance of the coil is 35.2 Yako-
bi’s units (see Problem 360). The specific heat of the alcohol
is 0.58 cal/g·deg. Disregard heat losses.
405. Use the data from the previous problem to calcu-
late the time needed to heat the alcohol by 1°C with a cur-
rent of 1 A and with a coil resistance of 1 ohm.
406. The coil of a heater has a resistance of 5 ohms and
is supplied from a current source of internal resistance
20 ohms.
What should be the resistance of the shunt in the heat-
er to reduce the amount of heat liberated in the heater to
one ninth of the value without a shunt?
407. A storage battery of e.m.f. 12 volts and internal
resistance r = 0.8 ohm supplies in turn external circuits
rated at 0.4, 0.8 and 2 ohms.
Calculate for each of these three cases the useful power
supplied by the battery and its efficiency. Explain the
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nature of the dependence of the efficiency and useful power
on the resistance of the external circuit.
408. At the end of his article "Liberation of Heat in
Conductors" Academician Lenz offers the following prob-
lem: "A circuit consisting of n cells is required to heat a
wire of a definite diameter and length Z. How many of these
cells are needed to heat a wire of the same diameter but
with a length pl?" In both cases the elements are connected
in series. Solve this problem.
409. The voltage in the mains of a charging plant is
13 V. The internal resistance of a storage battery being
charged is 0.4 ohm and its residual e.m.f. is 11 V.
What power will be expended by the plant in charging;
this storage battery? What part of this power will go on
heating the storage battery?
410. An electric motor has an ohmic resistance of 2 ohms
and is driven from mains of 110 V. When the motor is
running the current passing through it is 10 A.
What power is consumed by this motor? What fraction
of this power is converted into mechanical energy?
411. An electric kettle heater has two coils. When one
coil is switched on, the water in the kettle begins to boil
after 15 minutes and when the other is switched on—after
30 minutes.
How soon will the water in the kettle begin to boil if
both coils are connected: (a) in series; (b) in parallel?
412. A current is passed along an iron wire with such an
intensity as to heat it noticeably.
Explain why the cooling of one part of the wire (with
water, for example) causes the other part to become more
intensely heated than before the first part was cooled. The
potential difference at the ends of the wire is kept constant
throughout.
413. A fuse made of a lead wire with a cross section of
0.2 mm? is incorporated into a circuit of copper wire with
a cross section of 2 mm2. On short—circuiting the current
reaches 30 A.
How long after the short-circuit occurs will the lead
fuse begin to melt? How much will the copper wires heat
up during this time? Neglect the loss of heat due to thermal
conductivity. Take the specific heat of lead as constant
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and equal to C1 = 0.032 cal/g·deg and of copper, C2 :.-
=-0.091 cal/g·deg. The resistivity of lead is pi = 22 ><
><10‘6 ohm·cm and of copper pz = 1.7 >< 10*6 ohm·cm.
The melting point of lead is T , = 327°C. The temperature
of the wires before short-circuiting is T0 = 20°C. The density
of copper is dz = 8.9 g/cm3 and of lead di = 11.34 g/cm3,
414. In one calorimeter there is a certain amount of
water and in another the same mass of a liquid whose heat
capacity is to be determined. Identical constantan wires
connected in series to a current-carrying circuit are im-
mersed in the calorimeters.
What is the specific heat of the liquid if the temperature
of the water rises by 2.50°C and that of the liquid by
4.25°C some time after the wires are energized?
415. A steel wire has a resistance twice as great as a
copper one.
Which wire will liberate more heat: (a) in parallel; (b) in
series connection with both wires in a circuit powered by
a direct—current voltage?
416. A wire with a resistance R = 2 ohms is first con-
nected to a storage battery of internal resistance ro = 2 ohms
and then another such wire is connected in parallel.
By how much will the quantity of heat liberated in the
first wire change after the second is cut in?
417. A storage battery is shorted by an external circuit
first with a resistance Ri and then with a resistance R2.
At what value R0 of the internal resistance of the storage
battery will the quantities of heat liberated in the exter-
nal circuit be the same in both cases?
25. Permanent Magnets
418. Two magnetic poles repel each other with a force
of 8 gf. The distance between the poles is 10 cm. The mag-
netic mass of one pole is twice as large as that of the other.
Determine the magnitude of the magnetic masses of
these poles.
419. A bar magnet has a length Z = 10 cm and the magne-
tic masses of its poles are m = 10 cgs electromagnetic
units.
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Determine the magnitude and direction of the field
intensity vector produced by such a magnet at point A lying
on the extension of the magnet’s axis at a distance 0. = 5 cm
from the south pole.
420. Two identical magnets with a length Z : 5 cm and
weight p = 50 gf each made of magnico alloy which was
obtained by the Soviet scientists Zaimovsky and Lvov are
arranged freely with their like poles facing in a vertical
glass tube (Fig. 124). The upper magnet hangs in the air
above the lower one so that the distance a between the
nearest poles of the magnets is 3 mm.
S ;L?—i .L
A .._ ‘_‘—
Fig. 124 Fig. 125
Determine the magnetic masses of the poles of these mag-
nets. Will remote poles change the distance between the
magnets?‘
421. In order to keep the needle (Fig. 125) i·n a hori-
zontal position a load of 0.01 gf is suspended from its top end.
Find the magnitudes of the horizontal and vertical com-
ponents of the intensity of the terrestrial magnetic field.
Calculate the total intensity of the terrestrial magnetic
field. The dip angle oe = 70°. The magnetic masses of the
poles of the needle are m == 9.8 cgs electromagnetic units.
422. If a magnetic needle is secured to a cork and the
cork is floated on water the terrestrial magnetic iield will
cause the needle to turn and set itself along the magnetic
meridian, but the needle will not move northwards or
southwards. lf the pole of a bar magnet is placed not far
from the needle the field of the magnet will set the needle
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in the direction of the lines of force and will cause it to
move towards the magnet.
What are the reasons for the different behaviour of the
needle in the magnetic fields of the earth and the magnet?
423. One is given two outwardly identical long bars-
one is made of soft iron and the other is a steel magnet.
By observing the interaction of the bars in various posi-
tions how can one determine which of them is a magnet.
424. The length of a thin bar mag-
net is Z = 10 cm and the magnetic ¢
masses of the poles are m = i 50 cgs .
electromagnetic units. __
Determine the force acting on a ` J
unit north magnetic pole at a point gg
A lying on the perpendicular to the
axis of the magnet in its middle point. ·
The point A is at a distance 10 cm CI L
from the axis. Consider the poles as
points. WSI
425. A dip needle with a circular .,·é:g
scale is secured on a horizontal axis
(see Fig. 125). lm" N N
How can the direction of the mag- . .
netic meridian be found with the aid Flg‘ 126 F1g° 127
of this needle?
426. Several steel needles are freely suspended on hooks
from a small brass disk as shown in Fig. 126. If the pole
of a strong magnet is brought up to the needles from below
the needles will first be drawn apart and then will again
assume a vertical position when the magnet is brought
right up to them. As the magnet is removed, the needles
will again be drawn apart forming a cone—shaped bunch.
Explain the causes of this behaviour.
427. Two long equally magnetized needles are freely
suspended by their like poles from a hook as shown in
Fig. 127. The length of each needle is 20 cm and the weight
10 gf. In equilibrium the needles make an angle on == 2°
with each other.
Determine the magnetic masses of the poles of the needles.
The magnetic masses are concentrated at the ends of the
needles.
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428. The following experiment can be carried out with
the aid of strong magnets made of magnico alloy.
Identical magnets A and B are placed along one straight
line with their like poles fitted tightly against each other.
Then magnet B is raised so that it rests on its edge. The
magnet will be held in equilibrum in this tilted position
by the forces of interaction of the poles NN (Fig. 128).

t
A
Fig. 128
Determine the force of interaction and the magnetic masses
of the poles of the magnets when the magnet B of length
l = 10 cm and weight P = 100 gf is in equilibrium at an
angle oc = 10° The magnetic masses of the poles can be
taken as points and as being situated at the ends of the
magnets. Will the position
of equilibrium of the magnet
B be stable in this case?
'""` 429. The magnetic moment
M J P of a magnetic needle is the
product of the needle lengthl
. __’" and the magnetic mass m of
-__Q ..._._.._—., one of the poles: P =· ml.
Fig_ 129 The needle is placed in a
uniform magnetic field of in-
tensity H. The direction of the needle forms an angle
cx with the direction of the lines of force of the field.
Determine the magnitude of the mechanical moment
acting on the needle in this case. Express the mechanical
moment in terms of the magnetic moment of the needle and
the intensity of the field.
430. A magnetic needle uniform along its length has a
magnetic moment P = 50 cgs electromagnetic units and
a weight Q = 5 gf.
How should the point of support be arranged with res-
Pect to the centre of gravity of the needle to set it in a hori-
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zontal position in the terrestrial magnetic iield in the
northern hemisphere? The vertical component of the magne-
tic field is HU = 0.5 cgs electromagnetic units.
431. A magnetic needle with length Z and poles of magne-
tic masses im is attached to a wooden bar of length
L (Fig. 129) and placed in a uniform magnetic field of
intensity H. The bar and the needle can revolve around
point O.
Find the magnitude of the mechanical moment that will
cause the rotation of the bar around point O if the bar makes
an angle oc with the direction of the lines of force of the
magnetic field.
432. A magnetic needle has a length l and the magnetic
masses of its poles are im. The needle is broken in two.
What will the magnetic moments of the (
two halves be? Mh;];·i.(
433. Draw the lines of force of the H1}glll|·| ‘
magnetic field inside a magnetized steel
tube. al,
434. Indicate the positions and the will
. . .( [ull.
nature of equilibrium of a number of HM
magnetic needles arranged in a straight
line at equal distances from one an- (H; _A"
other. |\i g
435. A strong horseshoe magnet is
closed by an iron plate A (Fig. 130). ·—·—*·
The weight of the plate corresponds to l
the lifting force of the magnet, and the Fig_ 130
magnet can easily hold the plate. If the
poles of the magnet are now touched on the sides with a
plate B made of soft iron, the plate A will drop at once.
If the plate B is removed the magnet will again be capable
of holding the plate A. Explain this phenomenon.
436. A long rod made of soft iron is secured in a vertical
position. If a strong magnet A is brought to the top of the
rod as shown in Fig. 131 the rod will be magnetized so
intensely as to retain at its other end several small pieces
of iron. If the same magnet A is applied to the side. of the
rod near the bottom end (Fig. 132) the magnetization will
'be weak and the pieces of iron will fall. Explain why the
magnet A acts differently in these two cases.
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437. A strong magnet of magnico alloy can hold a chain
consisting of several cylinders made of soft iron (Fig. 133).
What will happen to the cylinders if a similar magnet
is brought up from below to this chain? The magnets are
arranged with their like poles facing. What will happen to

.l
lll l }*
` Il I n, #/7
i `T i `“ 1 . 1 rl .é¥“.'ll
ll l ll 5,
l 1 l
E `. .*‘l A l
ll `I l llillllllllll
ill 5 l wl l 1
ll T
, ao i , =i
*6 if r l
M /{f/l p_ l $4, _
Fig. 131 Fig. 132 Fig. 133 Fig. 134
the cylinders if the magnets have their opposite poles
facing?
438. Two identical horseshoe magnets are linked by their
opposite poles as shown in Fig. 134. One of the magnets has
round it a coil A whose ends are connected to a galvano-
meter G. If the magnets are detached, the pointer of the
galvanometer will be deflected at this instant through a
certain angle. If the magnets are connected again the pointer
of the galvanometer will also be deflected, but this time
in the opposite direction.
Indicate the causes for the deflection of the pointer of
the galvanometer.
439. Permalloy can be magnetized appreciably in the
terrestrial magnetic field and does not possess residual
magnetism, i.e., it is the softest material as far as magnetism
is concerned.

 
437. A strong magnet of magnico alloy can hold a chain
consisting of several cylinders made of soft iron (Fig. 133).
What will happen to the cylinders if a similar magnet
is brought up from below to this chain? The magnets are
arranged with their like poles facing. What will happen to
 
.l
    lll l }*
`    Il I n,   #/7
i `T i `“ 1 . 1 rl .é¥“.'ll  
ll l ll   5,  
l 1 l       
E `. .*‘l A l   
ll `I l llillllllllll      
ill 5 l wl l 1  
ll     T    
,   ao i , =i
*6 if r l  
M /{f/l p_ l $4, _
Fig. 131 Fig. 132 Fig. 133 Fig. 134
the cylinders if the magnets have their opposite poles
facing?
438. Two identical horseshoe magnets are linked by their
opposite poles as shown in Fig. 134. One of the magnets has
round it a coil A whose ends are connected to a galvano-
meter G. If the magnets are detached, the pointer of the
galvanometer will be deflected at this instant through a
certain angle. If the magnets are connected again the pointer
of the galvanometer will also be deflected, but this time
in the opposite direction.
Indicate the causes for the deflection of the pointer of
the galvanometer.
439. Permalloy can be magnetized appreciably in the
terrestrial magnetic field and does not possess residual
magnetism, i.e., it is the softest material as far as magnetism
is concerned.





CHAPTER III. ELECTRICITY Mi
How will a magnetic needle on a vertical axis near a long
bar made of this alloy behave if:
(a) the bar is vertical (Fig. 135);
(b) the bar is horizontally placed along the magnetic
meridian;
V
lx
wl
if
ii'., —
Fig. 135 Fig. 136
(c) the bar is in a horizontal plane perpendicular to the
magnetic meridian.
Will the behaviour of the needle change in these three
cases when the bar is turned?
440. A small thin iron nail is suspended from a light
fire—proof thread. A strong electromagnet is placed near
the nail (Fig. 136). The flame E
from a powerful gas burner is U _
directed precisely between the lf: ,
nail and the magnet and licks fil E" i
the nail when it is deflected by e i *2;
the magnet. If the windings of J
the electromagnet are energized " sb;
lZ·l1€ Hall be at OHC9 (l€l'l€Cl.9d
into the flame and will then be
ejected from it to assume its Fig.137
original position. After a lapse
of time the nail will again be drawn to the magnet.
Explain what causes these periodic oscillations of the
nail.
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441. F.N. Shvedov suggested the following design for a
motor. Some 20-30 nickel rods similar to these used in an
umbrella are attached to a small support bush htted onto
a sharp point. Nearby are arranged a strong electromagnet
and a gas burner with a broad and intensive flame as shown
in Fig. 137. When the windings of the electromagnet are
energized and the burner is ignited the impeller begins to
rotate uniformly in the direction shown by the arrow on
the drawing.
Explain what makes the impeller rotate.
26. Magnetic Field of a Current
Most of the problems in this section deal with the pro-
perties and peculiarities of the magnetic held of current
related to the closing of the lines of force of this held.
Since the problems are partly based on material outside the
scope of the school curriculum these problems are recom-
mended for discussion in extracurricular circles. Pay spe-
cial attention to the problems on the work done by the
forces of the magnetic held of current in a closed loop.
442. Draw the lines of force of a magnetic held of a
rectilinear current.
443. A current I flowing along a sufhciently long recti-
linear conductor sets up, as we know, a magnetic held
with an intensity
H :0.2% cgs electromagnetic units
where r is the distance of the point in the field from the
current—carrying conductor as measured in cm and I is the
current in amperes.
Determine the intensity of the held at point A 5 cm away
from the conductor if the current is 2 A. Draw the field
intensity vector. Find the force acting at point A on a magne-
tic pole of m. = 5 cgs electromagnetic units.
444. Given:
(a) The intensity of the magnetic held of a rectilinear
current at a distance R0 == 1 cm from the conductor is
H0 Z 0.21..
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(b) The lines of force of the magnetic held of such a cur-
rent are concentric circles.
(c) When a unit pole moves along a closed circuit the
work done by the magnetic held forces is zero if this circuit
is not penetrated by currents.
Use these data to derive the formula for the dependence
of the intensity H of the magnetic held of the current on
the distance R from the conductor.
445. A magnetic held at a certain point A is composed
of the terrestrial magnetic held with a horizontal component
of intensity H h = 0.2 cgs electromagnetic units and the
magnetic held of rectilinear current I = 5 A.
How should a current-carrying conductor be arranged
with respect to the point A for the vector of the intensity of
the resultant held be vertical at this point?
446. A conductor carrying a current is placed as in the
previous problem.
At what points in space will the held intensity be equal
to zero if the vertical component of the terrestrial magnetic
held is H ,, = 0.5 cgs electromagnetic units?
447. A current I flows along an inhnite T
rectilinear thin-walled pipe. _
What is the intensity of the magnetic V
held inside the pipe? The current is distribu-
ted uniformly along the entire section of the 1 \ gl \
1>i1>¤· li 1
448. A current I flows upwards along the Ii
inner conductor of a coaxial cable (Fig. 138) ' L
and returns down along the external shell P-ig_ 138
of the cable.
What is the intensity of the magnetic held at points
inside the cable?
449. A magnetic pole of m. = 5 cgs electromagnetic
units is passed around a circumference of radius R. A recti-
linear conductor carrying a current of 2 A is laid perpendicu-
larly to the plane of this circle through its centre.
Calculate the work done by the forces of the magnetic
held of the current during this displacement of the. magne-
tic pole.
450. When a magnetic pole moves along a closed path
under the same conditions as the previous problem some
8-121:;
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work is obtained. Can this result be used to construct a per-
petuum mobile?
451. A circular branching made from a uniform conduc-
tor is placed in a d-c circuit (Fig. 139).
What force will the magnetic field of the currents in the
branching exert on the magnetic pole placed at its centre?
452. A cork floats in a broad vessel filled with a weak
solution of sulphuric acid. Two small plates—copper and
idly - ` ‘ .
(
( iis;
. A12 tc ~ I
Fig. 139 Fig. 140
zinc—are passed through the cork. The plates are connected
on the top by a copper wire (Fig. 140).
What will happen to the cork if the end of a strong bar
magnet is brought up to it?
453. As we know, a current I flowing along a circumference
of radius R creates in its centre a magnetic field of intensity
0.2:tI
H; T
Determine the force acting on a unit magnetic pole placed
at the centre of a circular current of 5 A if the radius of the
circle is R = 10 cm. Indicate the direction of this force,
assuming the direction of the current to be known.
454. Professor A. A. Eichenwald of the Moscow University
carried out one of the basic experiments which directly
revealed the generation of magnetic fields for any displace-
ment of electric charges. In his experiment a certain charge
was put on a massive disk which was then set in rapid
rotation. The magnetic field set up by the charge on the
disk was detected with the aid of a magnetic needle arranged
above the instrument (Fig. 141).
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Determine the direction in which the needle is deflected
if a negative charge. is put on the disk and the disk rotates
in the direction shown.
455. Currents are sometimes measured with the aid of
the so-called tangent galvanometer (Fig. 142) consisting of
a small magnetic needle suspended from a light thread and
placed in the centre of a circular current. The plane of
the energized circle is arranged strictly in the plane of
the magnetic meridian.
/ \
CX.`.`;..;`.`;.O
Q Vi
if/z
Fig. 141 Fig. 142
Determine the angle through which the needle of the
tangent galvanometer will turn if a current I = 1 A is
passed along the circle, if the radius of the circle is R =-··
= 10 cm and the horizontal component of the terrestrial
magnetic field is H h = 0.2 cgs electromagnetic units.
Note. See Problem 453.
456. A current I is passed along the ring of the tangent
galvanometer in Problem 455 so that it establishes a field
H c = 0.1 cgs electromagnetic units in the centre of the
ring. As the current is being passed the circle turns after
the needle.
Determine the angle through which the circle should be
turned so that the needle is in the plane of this circle in
the case of equilibrium.
457. The magnetic field intensity inside a solenoid is
proportional to the current I and the number of turns per
8*
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116 PROBLEMS

unit length of the solenoid,. i.e.,
H: 1.261-il
where N is the total number of turns of the solenoid and l
is its length.
Find the magnetic field intensity inside a long solenoid
made of wire with a diameter 0.5 mm. The wire of the
solenoid is wound so that the turns are close to one another.
The current is 2 A.
27. Forces Acting in a Magnetic Field
on Current·Carrying Conductors
Even if the student uses correctly the left-hand rule
when the direction of current is perpendicular to the lines
of force of a magnetic field he usually encounters some
difficulties in applying it for finding the direction of the
force acting on a conductor when the current and the lines
of force of a magnetic field form acute angles with each other.
It is far more difficult to determine the nature of motion
of a conductor when the lines of force form various angles
with the direction of current in various sections of a con-
ductor. It is just as difficult to take account of the effect
exerted by the heterogeneity of a fneld on the behaviour
of a conductor in the simplest cases. All the problems in
this section deal precisely with these cases. In solving the
problems, pay careful attention to the se-
quence of applying the left-hand rule when
N 7 ppyp. 5 finding the forces acting on the separate
elements of conductors in various condi-
tions.
458. A rectilinear current·carr in con-
ductor is arranged above the poles osf aiorse-
Fig M3 shoe magnet as Shown in Fig. 143. The
° conductor can move freely in all direc-
tions.
What will happen to the conductor under the action of
the field of a magnet if the current passes in the direction
indicated by the arrow?
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459. A flexible free conductor is placed near a strong
long bar magnet (Fig. 144).
How will the conductor arrange itself if current is passed
through it from the top to the bottom?
460. Currents are passed through two free rectilinear
conductors arranged at right angles as shown in Fig. 145.
How will the interaction of the magnetic holds of the
currents change the position of the conductors relative
to each other?
461. A rectilinear current I 2 is passed along the axis
of a circular current I , (Fig. 146).
With what force are the currents interacting?
462. A soft spiral spring hangs freely. The lower end of
the spring is immersed in a cup of mercury. The spring and
the cup are connected to a d—c source as shown in Fig. 147.
What will happen to the spring after the circuit is closed
by a switch S?
463. A beam of positively charged particles moves with
a velocity v into a uniform magnetic field perpendicularly
to the lines of force of this field (only one particle is shown
in Fig. 148).
Along what path will the particles move in such a magne-
tic field?
464. An infinite rectilinear energized conductor AB has
near it a movable uniform rectilinear conductor CD of finite
length the whole of which lies on one side of AB and in
a plane passing through AB (Fig. 149).
What will happen to the conductor CD if current is
passed through it in the direction indicated by the arrow?
465. Current is passed along the conductor CD from point
D to point C (see the previous problem).
How will the conductor CD move in this case?
466. Two vertical circular conductors with approxima-
tely equal diameters are arranged in mutually perpendicu-
lar planes as shown in Fig. 150.
How will the conductors behave if a current is passed
through them in the directions indicated by the arrows?
467. An energized wire ring is freely suspended from
soft infeed conductors as shown in Fig. 151. A horizontal
magnet is brought close to the ring.
What will happen to the ring in this case?
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468. An energized ring (see the previous problem) is
arranged in the middle of a magnet.
What will happen to the ring if the direction of current
is reversed in it?
i
•
·. A ‘ i .v..
{ A { F E ' ( I¥¤3i'j;_(,,,.·» llilv
gp, la. A — (
*\\·j= V) ·· . I I FFJHWEUIIHWII
Fig. 151 Fig. 152
469. A copper disk is secured on a horizontal axis and
placed between the poles of a strong magnet so that the
north pole of the magnet is arranged on the right (Fig. 152).
The bottom of the disk is immersed in a cup of mercury.
Q
xw N
Avg:
D'
Fig. 153 Fig. 154
The axis of the disk and the cup are connected to a d—c source.
What will happen to the disk when the circuit is closed?
470. A light rectangular frame is suspended from a thread
near an infinite rectilinear conductor with current passing
through it (Fig. 153).
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How will the frame behave if current is passed through
it in the direction indicated by the arrows?
471. A rectangular frame with current passing along it
is arranged in a uniform magnetic field so that its axis is
perpendicular to the lines of force of the magnetic field
(Fig. 154). Indicate the direction of the forces exerted
on the sides of the frame BC and DA. Show how the magni-
tude of these forces changes as the position of the frame
changes during rotation.
28. Electromagnetic Induction
4772. In his work "How To Determine the Direction of
Induced Currents" in which Lenz’s famous rule was laid
down for the first time, Academician H.F.E. Lenz describes
some of his experiments which he carried out to determine
E
i
)_/ A c
.T;.· 8
l
Fig. 155 Fig. 156
the direction of induced currents. In particular, he consi-
ders the case of an induced current generated in a circular
conductor when it is turned through 90° relative to another
circular conductor with current passing along it (Fig. 155).
Determine the direction of current in a movable conductor
A 1f .1t IS transferred from a position perpendicular to the
circuit B to one parallel to it as indicated by the arrow.
_ 473. A rectangular conductor AC of finite length is perpen-
dicular to an infinite rectilinear current B (Fig. 156). The
conductor AC Omoves along metal guidelines parallel to
itself in the direction of current B.
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Indicate the direction of currents induced in the con-
ductor AC when its direction of motion coincides with that
of the current B. How will the induced current be directed
if the conductor AC moves in the opposite direction?
474. Determine the directions of induced currents in
the following experiment performed by Lenz.
A permanent magnet is placed along the magnetic meri-
dian. A rectilinear conductor is arranged parallel to the
magnet first above it and then under it. The magnet is
-—· — -=~ * ) ·—·
ii · l"- " 'B ‘:'-\
'> / i .9 ( N
* C -—-—— 0 V
Fig. -157 Fig. 158
rapidly turned through 90° first with its north pole to the
east and then to the west.
475. A copper disk is placed between the poles of mag-
nets as shown in Fig. 152. A galvanometer is connected in-
stead of a storage battery to the electric circuit shown in
the diagram.
In what direction will the induced current flow when the
disk rotates: (1) clockwise; (2) counter-clockwise?
476. Two rectilinear parallel conductors are moved
towards each other. A current I flows through one of them.
What is the direction of the current induced in the other
conductor? What is the direction of induced current when
the conductors are drawn apart?
477. The south pole of a magnet is removed with a certain
velocity from a metal ring as shown in Fig. 157.
Determine the direction of the induced currents in the
ring.
478. A small rectangular wire frame falls freely in the
space between the wide poles of a sufficiently strong elec-
tromagnet (Fig. 158) "
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122 PROBLEMS
Show the direction of the currents induced in the frame
when the middle of the frame passes through the positions
A, B and C. How will the frame move in these sections?
479. A small pendulum consisting of a metal thread,
a ball and a sharp point immersed in a cup of mercury
,., (Fig. 159) makes part of
an electric circuit. The
0 — pendulum is placed in
· _ g` the space between the
( _ ‘ Q t p_ broad poles of an elect-
‘ - romagnet and swings in
_- _ the plane perpendicular
S U N to the lines of force of
the magnetic field. Du-
// / ring the oscillations the
’ -9* sharp point of the pen-
Fig. 159 dulum remains im-
mersed in mercury.
How will the magnetic field effect the motion of the
pendulum? What is the direction of the currents in the
circuit of the pendulum?
T /->l§_
.·-·""'1_·_‘:;>
`·—- -·"'%
1 l
\\ ai
....®,._ _ ·-— {
e · »·* *·~-*
~---4-33
Fig. 160 Fig. 161
480. A copper wire connected to a closed circuit is sur-
rounded by a thick iron shell (Fig. 160) and introduced
together with the shell into the space between the poles of
an electromagnet. The iron shell acts as a magnetic screen
for the wire.
Will an e.m.f. bc induced in the wire?
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481. An aircraft flies along the meridian. Will the poten-
tials of the ends of its wings be the same?
Will the potential difference change if the aircraft flies
in any other direction with the same velocity?
482. A rectangular wire frame ro-
tates with aconstant velocity around W, .....\
one of its sides parallel to a current-
carrying rectilinear conductor nearby y '``. , u___
(Fig. 161). §@1mmm1m1Hu1l|¤l1||ua11m1·:i ‘‘‘’··
Indicate the positions in which the *
maximum and the minimum e.m.f.S
will be induced in the frame. \\ _ ___.. . .·~~ -
483. Two circular conductors are ````
perpendicular to each other as shown F1g_ 162
in Fig. 162.
Will a current be induced in the conductor A if the cur-
rent is changed in the circuit B?
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Chapter IV
OPTICS
29. The Nature of Light
This section includes a number of problems which require
the application of the simplest relations of wave and quan-
tum optics. In solving these problems, attention should
also be paid to the change in individual magnitudes (wave-
length and velocity) characterizing a light wave moving
from one medium to another. It is difficult to understand
the ratio c = M if the nature of these changes and their
physical meaning are not taken into account.
Before solving these problems it is recommended to
refresh your knowledge of the subject from a text-book.
484. The velocity of light c and the length of a light
wave A are related to the frequency of oscillations v by
the ratio
c = PW
Determine the change in the wavelength of red rays during
the passage from vacuum to glass if the refractive index
of glass is rz = 1.5 and the frequency of the red rays is
v = 4 >< 101* s‘1.
485. The refractive index of any substance is equal to
the ratio of the velocity of light propagation in vacuum
to the velocity of light propagation in the given medium.
It was found that the refractive index of one type of glass
is equal to ni = 1.50 for red rays and to nz = 1.54 for
violet rays.
Determine the velocities of propagation of these rays
in glass.
486. P. A. Cerenkov has found experimentally that when
an electron moves in some medium with a constant velocity
exceeding the velocity of light propagation in this medium
it will begin to emit light.
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Determine the minimum velocity to which the electron
Should be accelerated to produce such an emission when
the electron moves in a medium with a refractive index n, :
$1.•5•
487. Explain the phenomenon of the coloured bands
seen on thin films of oil on the surface of water.
488. If a thin soap film is arranged vertically the coloured
horizontal interference bands move downwards and at the
same time change their width. After some time a rapidly
growing dark spot appears at the top of the film which
bursts shortly afterwards.
Indicate what causes the motion of the bands and explain
the origin of the dark spot.
489. How will the pattern of Newton’s rings change if
the space between a lens and a plane glass is filled with
liquid whose refractive index is higher than that of the
lens, but less than that of the glass?
490. "Antireflection Optics" which was developed by
Academicians I.V. Grebenshchikov, A.A. Lebedev and
A.N. Terenin is widely employed in present-day optical
instruments to reduce the loss of light due to reflection
from the surfaces of lenses. This method is based on the
following phenomenon: if the surface of glass is coated with
a thin transparent film whose refractive index is less than
that of the glass and whose thickness is equal to a quarter
of a wavelength of the incident light, the intensity of
light reflected from such a plate will be zero and all of the
light will pass through the plate.
Consider the interaction of the light beams reflected
from the upper and lower surface of this film and explain
why the surface of the glass ceases to reflect the light after
the film is put on.
Why must the thickness of the film be equal to a quar-
ter of the wavelength of incident light?
Why must the refractive index of the film be less than
that of the glass?
491. Experiments show that the luminous flux is a flux
of separate photons or light quanta. Each photon has an
energy E = hv where h : 6.62 >< 10*7 erg·s is Planck’s
constant and v is the frequency of the light wave.
Determine the energy of the photons emitted by a yellow
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126 PROBLEMS
sodium flame if the frequency of the yellow line of sodium
is v = 5 >< 1013 s‘1.
492. When an electron was transferred in a hydrogen
atom from one stable level to another a quantum of light
was emitted with a frequency v = 4.57 >< 101* s”1.
Determine the change in the energy of the electron in
the atom due to this emission.
493. The great Russian physicist P.N. Lebedev estab-
lished in his experiments that light exerts on bodies of ray
absorptivity a pressure numerically
=‘ “ equal to all the energy which the light
brings in one second divided by the velo-
city of light (all magnitudes are in the
N cgs system).
M What force would the sunrays exert
`7 on the Earth if they were entirely ab-
sorbed by the earth surface? In nor-
mal incidence, the sunrays supply 1.94
cal to each square centimetre of the
Earth’s surface every minute.
E 494. Lebedev’s device was used to
_ measure the pressure exerted by light
‘ on the wings ofa light suspension shown
Fig_ 163 in Fig. 163. Each wing has two circ-
les one of which is darkened.
Find the force with which the luminous flux acts on the
darkened circle in Lebedev’s experiments if this flux sup-
plies an energy of 1.5 cal per minute per each square cen-
timeter of the illuminated surface. The diameter of the
circle is 5 mm. Assume that all light is completely absorbed
by the circle.
495. Prove that the force exerted by the light from the
Sun on any body diminishes in proportion to the square of
the distance of this body from the Sun.
30. Fundamentals of Photometry
496. A book can easily be read with an illumination of
50 lx. At what height should a lamp of 50 cd be hanging
above a table to provide good illumination of its surface
which lies directly under the lamp?
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497. The width of the aperture of a cinema projector
is 1.2 cm and that of the screen is 2.4 m.
How much stronger will the illumination of the aperture
in the projector be than that of the screen? What should
the illumination of the aperture be if the minimum permis-
sible illumination of the ,
screen is 4 lx? ··-Q ?
498. A desk-lamp of height lj
h = 30 cm stands on a table
(Fig. 164). ·¤
Determine the illumination
at a point on the table surface Q-l .
a distance cz == 60 cm from the E
lamp. The luminous intensity , ·
of the lamp is 25 cd. r$__——T_-G
499. At what distance Mg- 164
should the posts for street
lamps be installed so that the illumination on the ground at
the point lying halfway between two posts is not less than
4/15 lx? The height of the posts is h = 12 m. The luminous
intensity of the lamps is I = 300 cd. Assume that a noti-
` ceable illumination is provided
;. .__ only by the two lamps on either
,. " ` Ai I n side.
t i · 500. During fitting jobs in a
__ 0 Ul Y subway an electric lamp is secured
"° _? """""l"""" “" at the top point of the tunnel A
· (Fig. 165). What is the ratio bet-
lg J ween the illuminations produced
’· At i ii " by the lamp at the lowest point
' B and those at the point C lying
Fig 165 at the level with the horizontal
' cross section of the tunnel? The
luminous intensity of the lamp is the same in all directions.
501. A lamp of 400 cd is installed in a narrow-f1lm cinema
projector.
What illumination can be produced by this projector on
a screen 3 mz in area if only 0.3 per cent of the light emit-
ted by the lamp falls on the screen?
502. Three point sources of light are arranged at the
vertices of an equilateral triangle. A small plate is placed
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128 pnoennms
in the centre of the triangle perpendicular to its plane
and parallel to one of its sides (Fig. 166).
Determine the illumination of this plate if the intensity
of each source of light isI and the length
° of the side of the triangle is Z.
503. In constant conditions of illu-
1 mination a certain object is photo-
graphed first from a large distance and
then from a small distance.
‘ ' How will the illuminations of the
Fi 166 photographic plates in the camera dif-
g' fer in these two cases? Which of the
two requires a longer exposure?
504. An electric lamp of 100 cd consumes 0.5 W of
electric energy per candela.
Determine the efficiency 1] of this lamp if the mechanical
equivalent of light is equal to 0.00161 W/lu. Calculate
the quantity of light in ergs emitted by the lamp every
second.
505. The sunrays which reach the earth surface bring
in every minute an energy approximately equal to 1.94 cal
per 1 cm2 of the terrestrial surface (with perpendicular
incidence).
Determine the total amount of energy received by the
entire terrestrial surface. What fraction is this of the total
energy of light emission from the Sun? What planet receives
more energy from the Sun—the Earth or Jupiter? The
distance from the Earth to the Sun is R, = 1.5 >< 10** km,
the distance to Jupiter R2 is 5.20 times larger than to the
Earth, the radius of the Earth is 6.3 >< 103 km and the
radius of Jupiter is 11.14 times that of the Earth.
31. The Laws of Rectilinear Propagation
and Reflection of Light
Together with the problems on the position and the size
of an image produced by various optical systems, Secs
31-34 include many problems involving calculation of the
conditions when an observer can see these images.
These problems require a clear understanding of the
meaning of auxiliary rays in geometrical optics used to
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CHAPTER IV. OPTICS
construct images. It is equally important to know the
methods for determining the rays that actually form these
images. This will considerably facilitate the solution of
such problems, for example, as the construction of an
object positioned at some distance from a flat mirror, or of
the image of a large object in a small lens or in a lens half
covered by an opaque screen, and determining the position
of an observer’s eye for simultaneous viewing several im-
ages produced by optical systems.
In Secs 32-34 pay attention to the rules used to End
graphically the focus of the rays in a beam that has passed
through an optical system (for example, Problems 555-557).
In solving these problems, study the specific uses of the
equations of spherical mirrors and lenses for calculating
the position of the images produced by systems with con-
verging beams.
The problems in the sections that follow should be solved
in the order in which they are presented because many of
them are based on the results of previous problems.
506. How should a point source, a flat object and a
screen be placed for the outline of the shadow on the screen
to be similar to that of the object?
507. An electric lamp is placed into a frosted glass
sphere of radius 20 cm and is suspended at a height of 5 m
above the floor. A ball of radius 10 cm is held under the
lamp at a height of 1 m.
Determine the dimensions of the shadow and half-shadow
cast by the ball. At what height should the ball be placed
for the shadow on the floor to disappear? What will the
dimensions of the half-shadow be in this case? What should
the diameter of the ball be for the dimensions of its shadow
to be the same irrespective of the distance from the ball
to the floor?
508. The following simple method can be used to compare
the luminous intensity of two sources: a thick rod D and
sources S, and S2 some distance away are placed in front of
a semi—opaque screen AB (Fig. 167). The sources are so ar-
ranged that the half-shadows AO and OB are of the same
luminance.
9-1218
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130 _ PROBLEMS
In what directions should the sources be moved so that
the half—shadows cast by them are in contact all the time?
What patterns will be observed when the sources are shifted
in any other directions?
509. The image of an object is obtained using a box
with a small aperture (Fig. 168). The depth of the box
EC = 20 cm, the distance to the object CD = 20 cm and
the diameter of the aperture C is d = 1 mm.
B
\\\\Q»*"·*"/,}.7.81
Q.
//,/ "`°*•S, _ ETT;/r§'s&g.E;ZT;-E-p
Fig. 167 Fig. 168
Can the parts of an object 2 mm in size be distinguished
on the image in these conditions?
510. What will the shape of a light spot be if the di-
mensions of the mirror are small and those of the source
are large?
511. In one of his notes M.V. Lomonosov poses the fol-
lowing question: "Any colour if moistened with water
becomes deeper. Why?" The colour of the surfaces of bodies
that can be impregnated with water does indeed grow darker
and richer after moistening.
Explain this phenomenon.
512. One of the expressions of the laws of propagation
of light is Fermat’s principle assert-ing that light always
propagates along the shortest paths. Consider the following
case: light is emitted from a source A (Fig. 169), then
reflected from a mirror and reaches a point B. Prove that
the path ACB as determined by the law of reflection is the
Shortest of all possible paths of the ray.
513. Two pins A and B arranged as shown in Fig. 170 are
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stuck in front of a mirror. What arrangement of the images
of these pins will be seen by an observer in different view-
ing positions? In what position of the eye will the image
of the pins be superimposed on each other?
514. An object O’O and a mirror AC are placed as shown
in Fig. 171. Construct the image of this object in the mir-
ror. Where should the eye be placed to observe the image of
the entire object?
515. A desk—lamp is placed in front of a mirror. What
will be the change in the distance between the lamp and its
image if the mirror is drawn 5 cm away from the lamp?
A B é B \ 0\
/ \ 0 "
K" " s “
0 /
A \ $ A
Fig. 169 Fig. 170 Fig. 171
516. A man stands in front of a mirror and looks at
himself with one eye. What place should be covered in the
mirror so as to keep the image of the other eye out of vision?
517. A ball is placed on a horizontal table. At what
angle to the plane of the table should a mirror be placed
to have the image of the ball moving vertically when the
ball is brought towards the mirror?
518. A light ray is incident on a mirror. The mirror is
turned through 1° about the axis lying in the plane of the
mirror perpendicular to the ray.
Through what angle on will the reflected ray be turned
in this case? What distance .2: will the light spot move on
a screen set perpendicularly to the reflected ray at a dis-
tance l = 5 m from the mirror?
519. A mirror 1 m high hangs on a wall. A man stands
a distance of 2 m away from the mirror. What is the height
of the portion of the opposite wall in the room that can be
9*
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132 pnonnnms
seen by the man in the mirror without changing the posi-
tion of his head? The wall is 4 m from the mirror.
520. Determine graphically the positions of the eye when
an observer can simultaneously see in a flat mirror of finite
0 A dimensions the image of a
° point and a section of a stra-
ight line placed with respect
B to the mirror as shown in
mm: Fig. 172.
Fig. 172 521. When M.V. Lomonosov
was attempting to increase
the incendiary power of lenses he designed the device,
shown in Fig. 173, and called it the catoptric-dioptric
incendiary instrument. In this case
A2, A2, A2,A5 are flat mirrors and
B2, B2, B2, B2, B2 are convergent
lenses.
B4 Determine the angles at which
A #M#»»· _, the mirrors should be- positioned
.-~“"` V i and the minimum dimensions of
6; BJ these mirrors that will ensure the
equality of the luminous fluxes
E { incident on each lens. The diame-
B, B, ter of the lenses is d and the opti-
A A cal axes of the lenses B2, B2, B2,
' _ ’ B 2 form angles of ;|;45° with the
Fig- 173 direction of the primary beam.
522. A point source of light and
itis two images produced by two mirrors lie at the vertices
o an equi ateral triangle.
as
az / U
·-_`.____·;__ M1-; 0- 4
Fig. 174
Determine the position of the mirrors with respect to the
source and the angle between them.
523. Prove that a source and its two images in mirrors

132 pnonnnms
seen by the man in the mirror without changing the posi-
tion of his head? The wall is 4 m from the mirror.
520. Determine graphically the positions of the eye when
an observer can simultaneously see in a flat mirror of finite
0 A dimensions the image of a
° point and a section of a stra-
ight line placed with respect
B to the mirror as shown in
mm: Fig. 172.
Fig. 172 521. When M.V. Lomonosov
was attempting to increase
the incendiary power of lenses he designed the device,
shown in Fig. 173, and called it the catoptric-dioptric
incendiary instrument. In this case
A2, A2, A2,A5 are flat mirrors and
B2, B2, B2, B2, B2 are convergent
lenses.
B4 Determine the angles at which
A   #M#»»·  _, the mirrors should be- positioned
.-~“"` V i and the minimum dimensions of
6; BJ these mirrors that will ensure the
equality of the luminous fluxes
E { incident on each lens. The diame-
  B, B,  ter of the lenses is d and the opti-
A  A cal axes of the lenses B2, B2, B2,
' _ ’ B 2 form angles of ;|;45° with the
Fig- 173 direction of the primary beam.
522. A point source of light and
itis two images produced by two mirrors lie at the vertices
o an equi ateral triangle.
as
az / U
·-_`.____·;__ M1-;  0- 4
Fig. 174
Determine the position of the mirrors with respect to the
source and the angle between them.
523. Prove that a source and its two images in mirrors
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arranged at an angle cx to each other (Fig. 174) lie on a
circle. Show the position of the centre of this circle.
524. Two mirrors are situated at an angle of on to each
other (Fig. 174) and a source of light is placed in front
of them. Where should the eye of an observer be placed
to see both images formed by the mirrors simultaneously?
32. Spherical Mirrors
525. Prove that for spherical mirrors the product of the
distances of the object and the image to the principal focus
is always equal to the square of the principal focal
length.
526. The distance from a glowing point to the principal
focus of a concave mirror is p = 16 cm and the distance
from the image to the principal focus is q = 100 cm.
Find the principal focal length of the mirror.
527. Prove that the ratio of the length of the image
formed by a concave mirror to the length of the object
is equal to the ratio of their distances to the mirror.
528. An object is placed at a distance of 1 m from a con-
cave mirror. Its image is one third the size of the object
itself. Determine the position of the image, the radius of
curvature of the mirror and its principal focal length.
529. The image produced by a concave mirror is one
quarter the size of the object. If the object is moved b :
= 5 cm closer to the mirror the ,
image will only be half the size L
of the object.
Find the principal focal length H
of the mirror. H
530. The principal focal length { ll
of a concave mirror is f and the { {
distance from the object to the ; I
principal focus is p. fd Q
What is the ratio of the size of
the image to the size of the object? S ’
531. A small concave mirror L is Fig. 175
suspended from a thread in a mirror
galvanometer to read the angles of turn (Fig. 175). A scale
AA. is placed at a distance l = 1 m from the mirror and a
lamp S is adjusted underneath the scale.
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134 PROBLEMS
What should the focal length of the mirror be to obtain
on the scale the real image of the aperture in the lamp?
To what distance d will the image be shifted on the scale
if the mirror is turned through a small angle qa?
532. A concave mirror forms the real image of a point
source lying on the optical axis at a distance of 50 cm from
the mirror. The focal length of the mirror is 25 cm. The
mirror is cut in two and its halves are drawn a distance
of 1 cm apart in a direction perpendicular to the optical
axis (Fig. 176).
0 1_ in
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Fig. 176 Fig. 177
How will the images formed by the halves of the mirror
be arranged?
533. A thin flat glass plate is placed in front of a convex
mirror. At what distance b from the plate (Fig. 177) should
a point source of light S be placed so that its image pro-
duced by the rays reflected from the front surface of the
plate coincides with the image formed by the rays reflect-
ed from the mirror? The focal length of the mirror is F =
= 20 cm and the distance from the plate to the mirror
a = 5 cm. How can the coincidence of the images be estab-
lished by direct observation?
534. The focal length of a concave mirror can roughly
be determined by the following method: place a needle
A at a distance d from the mirror (Fig. 178), then place a flat
mirror P at a distance a from the concave mirror and a sec-
ond needle B at a distance b from the flat mirror.
Move the mirror P to match the virtual images A and
B of both needles formed by the concave and flat mirrors.
Knowing values of a, b and d corresponding to the coinci-
dence of the images, determine the focal length of the
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mirror. Can these images be observed by the eye at the
same time?
535. A screen S is placed a distance b = 5 cm from
a circular convex mirror as shown in Fig. 179. An object
KP of height h = 3 cm is arranged a distance a = 5 cm
rom the screen.
%·——-——·d·—-——-——··-—·—; S
{ A H
¤
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Fig. 178 Fig. 179
Where must an observer position himself to see the image
of the entire object? What are the maximum dimensions of
the object (with the given arrangement of the object, the
mirror and the screen) for the mirror to reproduce an image
of the entire object? The diameter of the mirror is d == 10 cm.
536. At what distance from one’s face should a pocket
convex mirror 5 cm in cross section be held to see all of
the face if the focal length of the mirror is 7.5 cm and the
length of the face is 20 cm?
537. The internal surface of the walls of a sphere is
specular. The radius of the sphere is R = 36 cm. A point
source S is placed a distance R/2 from the centre of the
sphere and sends light to the remote part of the sphere.
Where will the image of the source be after two reflec-
tions-from the remote and the nearest walls of the sphere?
How will the position of the image change if the source sends
light to the nearest wall?
538. A point source of light S is placed on the major
optical axis of a concave mirror at a distance of 60 cm.
At what distance from the concave mirror should a flat
mirror be placed for the rays to converge again at the
point S having been reflected from the concave mirror and
then from the flat one? Will the position of the point where
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the rays meet change if they are first reflected from the
flat mirror? The radius of the concave mirror is 80 cm.
539. Convex and concave mirrors have the same radii of
curvature R. The distance between the mirrors is 2R.
At what point on the common optical axis of the mirrors
should a point source of light A be placed for the ray-s to
converge at the point A after being reflected first on the
convex and then on the concave mirror? Where will the
rays meet if they are first reflected from the concave mirror?
33. Refraction of Light at a Plane Boundary
540. A ray of light falls on a glass plate of refractive
index n = 1.5.
What is the angle of incidence of the ray if the angle
between the reflected and refracted rays is 90°?
541. A pile 4 m high driven into the bottom of a lake
protrudes by 1 m above the water.
Determine the length of the shadow of the pile on the
bottom of the lake if the sunrays make an angle of 45° with
the water surface. The refractive index of water is 4/3.
542. A swimmer observes from under the water a lumi-
nous object above his head at a distance of 75 cm above the
water surface.
What is the visible distance of the object above the
water surface? The refractive index of water n = 4/3.
543. A point source of light is arranged at a height h
above the surface of water. Where will the image of this
source in the flat mirror-like bottom of a vessel be if the
depth of the vessel full of water is d?
544. What is the apparent distance from the surface of
water to the image formed in Problem 543 by a mirror if
the observer is standing in air and views the image verti-
cally downwards?
\/ 545. One face of a prism with a refractive angle of 30°
is coated with silver. A ray incident on another face at an
angle of 45° is refracted and reflected from the silver-coated
face and retraces its path.
What is the refractive index of the prism?
546. A coin lies on the bottom of a vessel filled with
water to a depth of 40 cm.
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At what height should a small electric lamp be placed
above the water surface so that its image produced by the
rays reflected from the water surface coincides with the
image of the coin formed by the refracted rays?
How can the coincidence of the images of the lamp and
the coin be established by direct observation? The obser-
vation is made along a vertical line.
547. The basic section of a prism is an equilateral tri-
angle. A ray is incident on the prism perpendicular to one
of its faces.
VVhat will the path of this ray be for various refractive
indices of the prism?
548. When bright sources of light are photographed,
thick photographic plates exhibit around the images of
the sources haloes whose internal boundary is sharp and
whose external one is diffused.
Explain the origin and nature of the haloes. Determine
the refractive index of the glass plate if its thickness is
d = 3.74 mm and the radius of the sharp boundary of the
halo around the image of a point source is a = 4.48 mm.
549. The perpendicular faces of a right isosceles prism
are coated with silver.
Prove that the rays incident at an arbitrary angle on
the hypotenuse face will emerge from the prism parallel to
the initial direction.
550. In his notes on physics M.V. Lomonosov offers the
ollowing observation for explanation: "Wet paper is more
transparent than crushed glass." Explain these phenomena.
34. Lenses and Composite Optical Systems
551. When observed from the Earth the angular diameter
of the solar disk is qp = 32'.
Determine the diameter of the image of the Sun formed
by a convergent lens with a focal length f = 0.25 m.
552. Where should an object be placed for a thin lens
to produce its erect image in full size?
553. A narrow beam of light passing through an aperture
in a screen S as shown in Fig. 180 is incident on a conver-
gent lens.

CHAPTER IV. OPTICS 137
 
At what height should a small electric lamp be placed
above the water surface so that its image produced by the
rays reflected from the water surface coincides with the
image of the coin formed by the refracted rays?
How can the coincidence of the images of the lamp and
the coin be established by direct observation? The obser-
vation is made along a vertical line.
547. The basic section of a prism is an equilateral tri-
angle. A ray is incident on the prism perpendicular to one
of its faces.
VVhat will the path of this ray be for various refractive
indices of the prism?
548. When bright sources of light are photographed,
thick photographic plates exhibit around the images of
the sources haloes whose internal boundary is sharp and
whose external one is diffused.
Explain the origin and nature of the haloes. Determine
the refractive index of the glass plate if its thickness is
d = 3.74 mm and the radius of the sharp boundary of the
halo around the image of a point source is a = 4.48 mm.
549. The perpendicular faces of a right isosceles prism
are coated with silver.
Prove that the rays incident at an arbitrary angle on
the hypotenuse face will emerge from the prism parallel to
the initial direction.
550. In his notes on physics M.V. Lomonosov offers the
ollowing observation for explanation: "Wet paper is more
transparent than crushed glass." Explain these phenomena.
34. Lenses and Composite Optical Systems
551. When observed from the Earth the angular diameter
of the solar disk is qp = 32'.
Determine the diameter of the image of the Sun formed
by a convergent lens with a focal length f = 0.25 m.
552. Where should an object be placed for a thin lens
to produce its erect image in full size?
553. A narrow beam of light passing through an aperture
in a screen S as shown in Fig. 180 is incident on a conver-
gent lens.





138 pnonnnms
Construct the path of the ray after it emerges from the
lens. The position of the foci of the lens is known.
554. A converging beam of rays passes through a round
aperture in a screen as shown in Fig. 181. The apex of the
beam A is at a distance of 15 cm from the screen.
S
i n
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Fig. 180 Fig. 181
How will the distance from the focus of the rays to the
screen change if a convergent lens is inserted in the aper-
ture with a focal length of 30 cm? Plot the path of the
rays after the lens is fitted.
555. A converging beam of rays is incident on a diverging
· lens. Having passed through
the lens the rays intersect
__ __ _ - .__ ___________F at a point 15 cm from the
°Z="`° " `° " """~;:__A_ lens. If the lens is removed
··""' the point where the rays
I meet will move 5 cm closer
B to the mounting that holds
Fig- 182 the lens.
Find the focal length of the lens.
556. The rays of a converging beam meet at a point
A. A diverging lens is placed in their path in the plane
B (Fig. 182).
Plot the position of the point where the rays meet after
passing through the lens. The position of the principal
foci FF is known.
557. In what position of the eye and for what distance
between a point source and a convergent lens can an obser-
ver simultaneously see this source lying on the optical
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axis of the lens and its image produced by the lens? The
focal length of the lens is f and its diameter is d.
558. The focal length of a convergent lens is 10 cm,
the distance of an object from the front focus is 5 cm and
the linear dimension of the object is 2 cm.
Determine the size of the image.
559. An image of a bright square is obtained on a screen
with the aid of a convergent lens. The distance between the
square and the lens is 30 cm. The area of the image is four
times larger than that of the square.
Determine the position of the image and the focal length
of the lens.
560. Photographs of the ground are taken from an air-
craft flying at an altitude of 2,000 m by a camera with a fo-
cal length of 50 cm.
What will the scale of the photographs be? How will the
scale change if the aircraft flies at an altitude of 1,000 m?
561. The size of the film in the camera in the previous
problem is 18 X 18 cm. What area can be photographed by
this camera at any one time?
562. A convergent lens forms on a screen an image of
a lamp magnified to twice its normal size. After the lens
has been moved 36 cm closer to the screen it gives an image
diminished by a factor of two.
Find the focal length of the lens.
563. What are the smallest details of an object that can
be observed separately with the naked eye at a distance of
2 km? The minimum angle of vision of the eye is cp = 1’
564. A thin convexo-convex lens is placed on a flat mirror.
Where should a point source of light be arranged so that
its image produced by this system is real and coincides
with the source itself?
565. An optical system consists of a convergent lens
with a focal length of 30 cm and a flat mirror placed at
a distance b = 15 cm from the lens.
Determine the position of the image formed by this
system if an object is at a distance a, = 15 cm in front
of the lens.
Plot the path of the rays in this case.
566. Plot the image of an object in an optical system
consisting of a convergent lens and a flat mirror arranged
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in the focal plane of the lens. The object is in front of the
lens and between the focus and the double focal length of
the lens.
What will the size of the image be if the object is pos-
itioned arbitrarily?
567. Determine the position of the image produced by an
optical system consisting of a concave mirror with a focal
length of 10 cm and a convergent lens with a focal length of
20 cm. The distance from the mirror to the lens is 30 cm and
from the lens to the object 40 cm. Plot the image.
568. A convergent and a diverging lenses having focal
lengths of 30 and 10 cm, respectively, are arranged at a
distance of 20 cm from each other.
Where should a source of light be placed for this system
to emit a beam of parallel rays?
569. Plot the image of an object formed by a system of
two convergent lenses. The focal length of the iirst lens is
9 cm and of the second 15 cm. The second
0 4, lens is in the focal plane of the iirst lens.
4,,* The object is at a distance of 36 cm from
ah the first lens.
Q Calculate the distance az of the image
4; from the second lens.
570. A plano—parallel plate is cut as
Fig. 183 shown in Fig. 183, and the lenses thus
obtained are slightly drawn apart.
How will a beam of parallel rays change after passing
through this system if the beam is incident: (a) from the
side of the convex lens? (b) from the side of the concave
lens? How will the behaviour of the beam depend on the
distance between the lenses?
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ANSWERS AND SOLUTIONS
Chapter I
MECHANICS
1. Rectilinear Uniform Motion
1. (1) at a distance of 8.5 m; (2) at a distance of 21.5 m.
Solution. (1) The time of propagation of the sound to the man in
the opera house is t, = % where S, is the distance from the stage
and v is the velocity of sound.
The time of propagation of the radio waves to the listener is tz = Zi!
where S3 is the distance from the opera house to the receiver and c
is the velocity of propagation of the S
radio waves.
If the listener and the man at H
the opera hear the sounds at the same 250
time, then t, = tz and '%=% or ,50 i`
Si = S2 •%· . {
- tlzr
(2) S3 = S3 -— E? where S3 == 30 0 { 2 3
m and S3 is the distance from the F1g° 184
listener to the radio receiver.
2. The cars will meet after 2.5 hours at a distance of 150 km from
M (Fig. 184).
3. Eleven cars (Fig. 185).
Solution. Assume that the man left B one hour after all the other
cars set off. The motion of his car is depicted by the straight line BC.
The lines 2, 3, 4, etc., show the motion of the cars coming from A
in 50, 40, 30, etc., minutes before the man has set off in his car.
The lines 8, 9, 10, etc., show the motion of the cars leaving A
after 10, 20, 30, etc., minutes after the man has departed from B.
Obviously, the number of the cars which the man meets en route will
be equal to the number of the points of intersection with the straight
ine BC.
4.S=51O m; u=85O ID./S. _
Solution. Since the velocity of light is many times greater than
that of sound in the air, t, may be assumed as being equal to the time
of Eight of the shell and tz to the sum of the times of flight of the
shell and the propagation of sound from the place where the shell
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and v is the velocity of sound.
The time of propagation of the radio waves to the listener is tz = Zi!
where S3 is the distance from the opera house to the receiver and c
is the velocity of propagation of the S
radio waves.
If the listener and the man at H
the opera hear the sounds at the same 250 
time, then t, = tz and '%=% or ,50 i`
Si = S2 •%· . {
- tlzr
(2) S3 = S3 -— E? where S3 == 30 0 { 2 3
m and S3 is the distance from the F1g° 184
listener to the radio receiver.
2. The cars will meet after 2.5 hours at a distance of 150 km from
M (Fig. 184).
3. Eleven cars (Fig. 185).
Solution. Assume that the man left B one hour after all the other
cars set off. The motion of his car is depicted by the straight line BC.
The lines 2, 3, 4, etc., show the motion of the cars coming from A
in 50, 40, 30, etc., minutes before the man has set off in his car.
The lines 8, 9, 10, etc., show the motion of the cars leaving A
after 10, 20, 30, etc., minutes after the man has departed from B.
Obviously, the number of the cars which the man meets en route will
be equal to the number of the points of intersection with the straight
ine BC.
4.S=51O m; u=85O ID./S. _
Solution. Since the velocity of light is many times greater than
that of sound in the air, t, may be assumed as being equal to the time
of Eight of the shell and tz to the sum of the times of flight of the
shell and the propagation of sound from the place where the shell
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bursts to the gun. For this reason the time of propagation of sound
will be tz - t, and the shell range S == v (tz -—- t,), where v is the
_ , S U([2····t1)
velocity of sound; the velocity of the shell is u = E- = --7;-
5. I = 6 S.
S/1111
/00
90
80
70
B
60· ·*·—· · ······ ····*— 7 —·** " *
50 I
40 //
30 1 2/3 8 9 10 11 12
’” J
g 0
A /0 20 30 40 50 00 70 80 90 /00 //0 /20 Z/nin
Fig. 185
Solution. The second train will travel with a speed v = vi -|- v2
relative to the passenger. With this motion the oncoming train will
travel a distance equal to its length in a time
l
i=-1
”1+Uz
6. v = 36 km/bl'.
Solution. If v is the speed of the electric train relative to the earth
its velocity relative to the train coming in the opposite direction will
be 2v and may be expressed through the length l and the time t of
passage of the oncoming train, i.e., 2v = %· where l = 16.5 >< 10 —{—
-|-10><1.5—|-20=-200m. _
1 k7. A factor of 1.07 more time is required on the river than on the
a e.
Solution. The time of motion on the river upstream is
t __ S
ia- U2*U1
where S .-:1 km.
The time of motion downstream is tz:-i.. .
”2+v1
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The total time of motion on the river (up and down) is
2Sv
*:*1 + tz =·;)?_%§·
The time of motion on the lake (up and down) is t3: ? .
z
The ratio of the times of mo- S
tion is
2 {km —-— - ·-·
Fig. 186 illustrates the plots of I
the motions: I —motion 1n stag- Jl
nant water; II —motion on the ri-
ver; t3 and t are the respective times
of motion for the two cases.
8. S1 = 2.1 {my;
Solution. Mov1ng downstream 0 5 /0 /5 20
the launch will cover, relative to Fi 186
the water, a distance g'
S': zz-it-$:0.8 km
U2 2 v2+v1
(see the solution to Problem 7).
Upstream
s":v_.¢,:-J-’L s.»s1.s km
U2—U1
The total distance covered by the launch relative to the water
will be
S,= S' —|— S”= 2.1 km
9. tg "'—: S.
Solution. The equations of motion for the three cases specified in
the problem are
S 2 v,t,, S Z vztz, S = (U1 U2) tg
where S is the length of the escalator; v,—its velocity; v2—the
velocity of the passenger on the stationary escalator; ti-the time
of ascent of the passenger standing on the moving escalator; tz-
the time it takes him to ug the stationary escalator; t3-the time
needed to arrive at the top w en the passenger walks up the moving
escalator.
Solving these equations we get
tilg
t S
3 t1+t2
10. t3 = 12 hours.
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Solution. The equations of motion of the launch from A to B and
from B to A are
S = (V1 + V2) *1 and S ·'= (V1 ·· V2) t2
where tI = 3 hours is the time of motion downstream; tz = 6 hours
is the time of motion upstream; v, is the velocity of the launch relative
to the water; v2 is the velocity of the river current and S is the distance
between A and B.
The equation of motion of the launch with its engine cut off is
S ·‘=’· vzts.
Solving these equations simultaneously for t3 we obtain
ztifg
11. t=6 hr 15 min.
Note. The time t = E?-qié (see the solution to Problem 7).
12. In all the three cases lhe launches will meet the ring-buoy at
the same time.
Solution. The velocity of the current affects the motion of both
launches and the ring-buoy similarly and cannot change their mutual
positions. This velocit may therefore be disregarded and the motion
of the launches and the ring-buoy only considered
-7/, relative to the water.
The distances traversed by the launches rela-
{ tive to the water in the time t before they turn
I will be SI = vit and S2 = vzt.
l Returning to the ring-buoy with the original
{ ·y velocities v, and vz the launches should obviously
I spend the same time to cover the distances S I and
I S2 to the ring-buoy as was spent when they
I steamed away from it.
I G U 13. on = 71°35’.
- -.-... 2 Solution. The drop will move relative to the
pipe in a vertical direction with a velocity v2 and
Fig. 187 in a horizontal direction with a velocity vi in the
op osite direction to the motion of the cart. The
total velocity of the d)rop v relative to the pipe will be equal to the
geometrical sum of the velocities vI and vz (Fig. 187).
For the drops to move parallel to the walls of the pipe the direction
of the velocity vector v should coincide with the axis of the pipe.
This will occur if
t»&I1C.t=%·=3, <I.=71°35'
1
14. [5:- 18°30’.
Solution. The direction of the weather vane will coincide with
the direction of the air motion relative to the ice·boat. Since the ice-
boat moves with a speed v, the total velocity w of the air relative
to the ice-boat will be equal to the geometrical sum of the two velo-
cities v and u (Fig. 188).
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The velocity w will form an angle on with th l` f ‘
the ice·boat such that 0 me 0 motion af
tan on = 2- = 2
v
The angle between the plane of the sail and the weather vane will be
B = cx — 45° = 63°30' — 45° = 18°30' I ‘,ZJ"""‘·· U
15. l-:200 m; u=20 m/min; v=—-12 {
m/min; on = 36°50'. I
Solution. In both cases the motion of the {
boat is composed of its motion relative to the I
water and its motion together with the water { \
relative to the banks. I A
First case (Fig. 189). The boat moves along -1; W
the river with a velocity v and covers during
the crossing a distance downstream of
F. O 1
z, = ol, (1) 1g 88
The boat moves across the river with a velocity u and traverses
a distance of
lz T ut,
o c 6
‘——r·‘—···—·7···———-· --————————T-—-——
i ____ / ____ I
{ zz
U I
. I
A A
Fig. 189 Fig. 190
Second case (Fig. 190). The velocity of the boat along the river
is zero, i.e.,
u sin on = v (3)
The velocity across the river is equal to u cos ot, and the distance I2
covered during the crossing will be
lg = u cos oltz (4)
Solving the system oi the four equations (1), (2), (3) and (4) we
obtain
l- QS u L 0--%- :1-—arcsin3—
-1/:2-—¢§’ ri ’ M ’ "“ u
10-1218
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16. u = 8 m/s;E»,.s12°.
Solution. As in t e lprevious problem the velocities of the current
and of the launch shou d be reso ved into components along the line
AB and perpendicularly to it (Fig. 191). In order that the moving
launch is always on the straight line AB the components of the velo-
city of the current and of the launch in the direction perpendicular
to AB should be equal, i.e.,
usinB= vsinoc (1)
When the launch moves from A to B its velocity relative to the banks
g 6
" /3 ` {Ex
¢Z\x\ ZL U
1 A
Fig. 191 Fig. 192
will be u cos fl + v cos on and the time of motion will be determined
from the equation
S= (u cosB-|- vcos ot)t, (2)
The time of motion from B to A (Fig. 192) can be found from the
equation
S= (u cosB- vcos ot)t2 (3)
From the known conditions,
t, -|- tz = t (4)
Solving the system of the four equations we find
_ z '
B=arc cot -——————-—-————S + VS2 vzt COSZ OL at 12°
vt sin on
u == v m 8 m/s
17. u = 40 km/hr.
Solution. All the points on the wheel rim simultaneously perform
two motions: translational, with the entire bicycle, and rotational,
around the wheel axis. The total velocity of each point will be the
sum of the linear velocities of the translational and rotational motions.
If the wheel of the bicycle moves without sliding the linear velocity
of the rotational motion of the wheel rim will be equal in magnitude
to the velocity of the translational motion of the bicycle, These velo-
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cities are opposite at the point A (Fig. 193). The total velocity of the
point A will therefore be equal to zero. At the point B the velocities
of the translational and rotational motion will be directed one way,
and the total velocity of the point B will be equal to 2v, i.e., to
40 km/hr.
18. The bobbin will roll in the 8
direction of motion of the end of the
thread with a velocity of u= Egg; v.
Solution. The displacement of the ·——
thread end depends on two things:
the movement of the bobbin axis and
the change in the length of the thread
during winding (or unwinding). It is |
clear that the motions of the end of
the thread due to these causes will Fig. 193
always be in opposite directions. If,
for example, the bobbin moves to the right the motion of its axis
will cause the thread end to move to the right and to the left due to
the thread winding.
Since r < R, the change in the length of the thread during one
full revolution will always be less than the motion of the bobbin axis
during the same time.
If one adds these motions, the end of the thread should always be
moving in the same direction as the axis of the bobbin. During one
full revolution T the axis of the bobbin will be dis laced to the right
by a distance 2nR and the length of the thread will be reduced by 2m-.
If the velocity of the axis is u = any-E the velocity with which the length
of the thread diminishes will be 2-;; = gf-gg- -%· = -1% u. The velocity
of motion of the thread end will be equal to the difference between
these velocities, i.e., v = u — gi u.
Hence,
uz--—i¥-— v"
R-—r
The axis of the bobbin moves faster than the end of the thread.
19. The bobbin moves in the direction of motion of the thread end
with a velocity u = % v.
Note. (See the solution to the previous problem.) The axis of the
bobbin moves at a slower speed than the end of the thread.
20. v, = 1.1 m/s; v2 = 0.5 m/s.
Solution. In the first case the velocity of one body relative to the
other will be
m=w+w m
and in the second case
uz = vi ··· U2 (2)
10*
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148 ANSWERS AND SOLUTIONS I
Solving the system of equations (1) and (2) we get
The values of ui and uz can be found from the conditions of the
problem using the ratios
_ $1 __ Sz
ui‘—"z" v u2·‘ tz
2. Rectilinear Uniformly Variable Motion
zi. .:%%:2.5 mz; ..,:%*%.2:1 m/S.
22. g x 973 cm!s°.
Note. Calculate the value of g for each path.
23. The distance from the fourth drop to the roof is g = 1 m;
the distance between the 4th and 3rd drops % = 3 m; between the 3rd
and the 2nd 2% = 5 m and from the 2nd to the 1st it is = 7 m,
24. S= 27m; v=9 m/s.
25. The motion is uniformly retarded up to the point B and uni-
formly accelerated after the point B. At the moment that corres onds
to the poigt B the body stops and then the direction of its velbcity
IS reverse .
The initial_ velocity vo = 7 m/s and the acceleration a z 0.64 1n/ s2.
The equation of the path is S = 7t - 0.32tz.
26. h = 14.7 m.
L
27. M?-1%.
_ Solution. If the time of fall of the first body is t, that of the second
zvlillfbe t -— 1: and the equations of motion of both bodies will take
e orm
2 ..
H 1:-%- and H
Hence,
l=Hi-H2=gt ·c—%g1:2
and the required time is :..1%--}-% .
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28. hx57 m; tz3.4 s.
Solution. The eqtuations for the lengths of paths AC and AB
(Fig. 194) traversed y the body from the start of fall will be
__ ___ gig .._£_8 (#--02
AC-h- 2 and ABM. 2 -—-§-·-
where t is the time of fall from A to C.
Solving these equations gives us the required values of t and h.
dSecond method. Let us consider the equations for the paths AB
an BC.
The equation for AB is
.'2.:.@£ " ""
2 2
where ti is the time of motion of the falling body
from A to B. -- 5
For BC Y
g == vofz —|- E-? ”°l"’
...7,. C
where vo = {I/2g E- is the velocity of the body at ’ ”
B and iz == 1 is the time of motion from B to C. Fig. 194
The total time of fall is t = t, -|- tz = i, —|- 1.
By solving these equations we can obtain the values of h and t.
H h -— H h 2
2** "¤=—2i-1**/2gH "¤¤¤¤=Lz_%L·
Solution. The path traversed by the first body before it meets
the second is
nsf.
H- 2
and by the second body before it meets the first is
2
h=U0t-Eg-—
After a simultaneous solution of these equations
H h
v<·=·§·?· VM
Hence,
2 H h 2
hII13X::g@' :: (hmal >
30, t=.”\£.%$.*Lé·;._... lwg vozyggg,
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Solution. The time the body takes in falling from A to B is
t,-.:1/gg. The time of rise of the body from C to the highest
point is tz:]/gg The required time t=t,-tz-.= :
=__._.._....V?é ?`·_
8
If H > h, the second body should be thrown after some delay;
when H = h, the bodies should be thrown simultaneously; when
H < h the second body should bo thrown before the first begins to fall.
31. =& 1.
n t g —{— 2
Solution. If t is the time of motion of the first body the time of
motion of the second will be t — ·c and the equations of motion of
the two bodies will take the form
z ,_ 2
At the moment the bodies meet, H ,=H 2 and
,:@g_—I—g·r
2g
1 -.--- ----
?·2· ¢=-I? +—g;- V2Hos+v§: v=V2sHo+v3·
Solution. Since the load is initially at an altitude HO and has an
initial velocity vo directed upwards, the equation of motion of the
load will be
sig
H:·.~H0—l··U0t-——2··
and the magnitude of velocity at any moment will be determined by
the equation
v = vo ——- gi
During the descent to the earth, H = O. Inserting this value for H
in the first equation, we find the time of descent i and use this time
to find the ve ocity when the body reaches the ground from the second
equation.
- YT 3
·4. zi/-1*-· —- .
3 i 2g , 4 HO
Solution. The velocity of the first ball at the moment it strikes
the plate will _be. vo = K2gH0. Since the impact is elastic, the ball
will begin to_r1se after t e impact with a velocity of the same magni-
tude vo. During the time t the first ball will rise to a height
h :-:.1} t-'§‘E•
1 -0 2
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During this time the second ball will move down from a point A
a distance
zrz
”==T
At the moment the balls meet, h, -|- hg = H0. Hence,
vo 28
35. (1) v= gt; (2 v= —v -|— gr.
Solution. In the tgrst case the velocity of the first body at any
moment relative to the earth is
Vi = V0 ··· Et
The velocity of the second body relative to the earth is
v¤= v¤——e(¢—¢)
The required velocity of the second body relative to the first will be
U = U2 —·— U1 = g"I`
The velocity v is directed upwards both during the ascent and des-
cent of both bodies. _
During the ascent the distance between the bodies diminishes uni-
formly and during the descent tm
it increases uniformly.
36. t = 10 s; Z, = 100 m.
The distance between the
motor—cyclists uniformly dimi- 300
nishes with time according to
the law 200
Z: S __t(v1 + U2) Z=.S'-(v,+v_,)t
and becomes zero after 10 s /00
(Fig. 195).
f Sollzition. If lfhe hdistance t
rom t e point w eret ey meet 8
to the point A is li and to the 0 2 4_ 6 8 10
point B is lz, then Fig. 195
12 :2
and
S Z li —[—· Z2
Hence,
t__ __LS`_ I __ v,S _; S2
vi+v2’ 1 v1+v2 2 (vi+v2)2
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3. Curvilincar Motion
37. In all three cases the body will have the same time of descent.
The motion of the car only affects the magnitude of the horizontal
components. of the velocity and the acceleration of the body and does
not affect the nature of its mo-
<. K tion along the vertical.
~. 38. v = Vvg —}— 2gh.
c ·. Solution. The bullet takes
| ` part simultaneously in two
i g Qt 8 vx D motions: uniform motion in a
-—·-—¤`__ _._E£;_ __; horizontal direction with a con-
; stant velocity equal to the ini-
’i¥?C vi tial velocity vo and in free fall
"° Y { vertically. These two motions
{ are added to produce the re-
5 ** 0 sultant motion in a parabola.
F. 196 Assume that B is the point
lg• where the bullet lands (Fig. 196);
BC is the vector of the bullet
velocity as it strikes the water; BD is the horizontal component of the
veloqity vector v equal to ox; and BE is the vertica component
equa to vy.
Since v = vo and v2 = 2gh the velocity of the bullet striking
1; U
the water IS
v= \/ v§ +2gh
39. t=2 S; hi=h2=·-19.6 H1; S2=-*15 m.
Solution. The equations of motion of the bodies horizontally
S1 Z'- vit and Sg = vzt
and vertically h == S? and hg = 5; .
————- ·- ----- Since it is given that the times
{ of flight are the same and equal to
“' ‘ sz =;1v2t= 15 m.
vx 40. t= 100 s; S = 88.7 km.
Fig. 197 Solution. The components of
_ _ the shell velocity at the initial
moment in the horizontal and vertical directions will be (Fig. 197):
vx == vo cos ot and oy = vo sin ot
The equation of motion of the shell horizontally is S = vxt, and
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vertically
2
We are given that the point where the shell falls is at the same
height as the ploint of projection, i.e., at the point of fall H = 0.
Inserting t e value of H = 0 into the equation of motion in the
vertical direction we can End the time of ilight of the shell from the
point of projection to the point of landing: t == %£ (the Second root
of the equation t = 0 determines the moment o_f projection).
Inserting the value of t into the first equation we can determine
the range of flight
3 2
S =—%’£¥=-%-sin or cos oc=& Sin 2oz
8 8 E
41. G = 45°.
Note. See the solution to Problem 40.
42. %=tan2 ot.
43. zzz; arcsin % .
2 vo
Solution. If l < Smax, there are two angles aj and az for which
the range will be l for the given initial velocity vo. This result can be
obtained directly from the equation
of the range (see the solution to H
Problem 40) and from the well-known {
trigonometrical ratio:
sin 2oz = sin (180° -—- 2oz) =
=sin2(90°——c&) n
With the given initial velocity vo I L 6*
the range Z will be the same for the
angles of throw oc1= oc and uz = Fig. 198
= 90° —— G.
There are always two trajectories for any one range of flight
(Fig. 198).
The gently slo(ping trajectory corresponding to the angle on is known
as "grazing", an the steep trajectory corresponding to the angle
(90° —- cx) is called "curved’ .
z · 2
44. num: Y-9%i:2,1s7 m.
Solution. The minimum safe altitude is determined by the maxi-
mum elevation of the shells. The equation of motion of the shell in
a vertical direction is
n gtz
T-vil-·§‘
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where v, = vo sin on (see the solution to Problem 40). The vertical
com onent of the velocity of the shell at any moment is vy = v, — gt.
It maximum elevation vv = 0 and therefore the time of ascent is
;.-IJ?. .;..1 ».m.,=3éi—.%=g§=Pi?2%*?i‘=2,487 m
45. cc z 76°. _ _
Note. See the solutions to Problengs 40 and 44.
46. l= sinotcos 2ot=—.·§-% .
Solution. The curvilinear motion of the shell in a parabola can
be resolved into two rectilinear motions in the horizontal and vertical
directions. The motion of the shell is considered from the point A
<¤¤¤ Fig; §>; . . .
The 1n1t1al velocities Wlll be:
horizontally v, = vq cos B;
vertically _v2 = vo SIIl.B. _
The equations of motion of the shell will be:
horizontally
S = vit = Dot COS B
vertically
grz mz
h=U2t—·*·2—=U0tSlIlB—·-T
The horizontal distance S and the height h of the Eoint B where
the shell falls are linked with the length AB = l by t e ratio
S .-:1 cos or.
.=; .;.. . } <3>
Solving equations (1) and (2) simultaneously and utilizing ratio (3)
we can hud the required distance
__%&(sinBcosa—cosBsinu)cosB (4
— g coszoa )
It is given that B = 2oz. Thus transforming the equation (4) we get
l_2v§ sin on cosz on
— g cos? oc
4. Rotational Motion of a Solid Body
47. v z 0.8 cm/s; co = 0.00175 s·1.
48. v z 233 m/S; a z 1.7 cm/S2.
49, (.):1 S'1; ¤i=% `\/R2-+432:20.1 cm/S2,
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Solution. At any moment the linear velocity of the points on the
pulley is equal to that of the weight, i.e.,
U =
After the weight has moved a distance S, the velocity will be equal
to 20 cm/s.
The angular velocity is
oa : = 1 s'!
The total acceleration of the point A will be compose;] of the acce-
leration a and the centripetal acceleration equal to % (Fig. 199):
"" ' z 2 · ....j
a, :1/-:12+ @1%:-% `\/H2-|—4S2
50. v z 7.9 km/s.
Note. With the conditions specified in the problem the centripetal
acceleration during the motion of the body around the Earth should
be equal to the acceleration of free fall.
/x/L;/,/{ {ff,
/ `i€-~— l
A \ // D,
I /2/// //
Q A D. F cr.
Fig. 199 Fig. 200
51. The centre of rotation is 62.5 cm from the line AB and 12.5 cm
from the line AD.
Note. When the top of the table is turned from the position ABCD
to the position A ,B,C,D, (Fig. 200) the point A plasses to the point A,.
B to B,, etc. The lines AA, and BB, will be the c ords of the arcs along
which the oints A and B move when the top is turned. The centre of
rotation will lie at the point of intersection of the perpendiculars drawn
from the middle of these chords.
5. Dynamics of the Rectilinear Motion of a Point
52. F = 1,250 d nes.
53. vo = 7.56 mj;. _ ( _
Solution. If the weight of the stone IS P = mg, the force of friction
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The acceleration acquired by the stone under the action of this
force can be determined from the equation kmg = ma and the initial
velocity from the ratio vo = \/2aS = `l/2kgS = 7.56 m/s.
54. S = 25.6 m.
Note. See the solution to Problem 53.
55. F at 43.05 kgf.
56. 1 km/hr.
Solution. Since the plower of the engine is the same in both cases,
the following relation s ould hold
N =“- F,v, Z Fzvz
where F, and v, are the tractive force of the engine and the speed of
the tractor on the icy road; F2 and v2 are the tractive force and the
speed over the ledger road.
Since at constant stpeed the work done by the tractive force of the
engine is only expende in both cases to overcome the forces of friction,
Fg = k,P and Fg '= kgp
where P is the weight of the sledge.
It follows from (1) and (2) that
kivi-Tkzvz and Uziiigil
kz
57. F = 2.5 kgf.
Solution. If the weight P was the only force acting on the body
it would be moving with an acceleration g = 9.8 m/sz.
The body moves with an acceleration a > g and therefore it is
acted uson, in addition to P, by a certain
force irected downwards. According to
F G Newton’s second law,
P
H · I P-|-F.-:-ga
and
F:-E-a——P:P (E-1)
mg g g
· 58.F=m(g—{—a).
Fig' 201 Solution. The weight will move in the
same manner as the support with an accele-
ration a. The weight is acted upon by the force of gravity mg (Fig.
201) and the force of reaction of the support Fwhich will be equal to
the pressure exerted by the weight on the support. According to New-
ton’s second law,
F —- mg = ma
hence
F=m@+®
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59. u = 4.9 m/s2. .
Solution. The tension in the thread will diminish if the point 0
moves with an acceleration a directed downwards. In this case the
tension in the thread T can be determined from the equation of motion
of the ball, mg — T = ma. For T to be equal to K; the acceleration
should be
ax·Qg:i’=·§—=4.9 m/sz
m 2
60. F1 = 1,770 kgf; F2 = 1,500 kgf; F, = 1,230 kgf.
Solution. The accelerations of the lift are determined graphically
and are: ai = Q-)- = 1.8 m/s“ during the tirst two seconds; a2=0
1
between the second and tenth seconds and
os: ..3. = .-1.8 m/sz
*1
during the last two seconds. _
h The equations of Newton’s law for each of these cases are written
t us
F1-—P=-E ai, F2-P=0, F3—P= 5- aa
H 8
where F,, F2, F3 are the tensions in the cable during the respective
intervals of time.
61. Solution. Each weight is acted upon by two forces: the force
of gravity mg and the tension in the spring { (Fig. 202). According
to Newton’s second law, mg -— f = ma or I; = m (g-
— a). The tension in the springs will be ifferent de-
pending on the magnitude and direction of the accele-
ration a.
1. When the system is at rest, a = 0; j= mg, g
and the tension in each spring is equal to the weight
attached to it. ;
2. The system falls freely, i.e., a = g; f = 0. The _+__
springs are not deformed or stretched. All the weights I mg
are at one level. '
62. F == 80 kgf. _
Solution. lf the parachutist descends with a con- Fig. 202
stant velocity v the resultant of all the forces on him
is zero, i.e., P - F = 0 where F is the air resistance. Therefore.
F = P = 80 kgf.
63. F=m (-I?-g) :-8,800 dyn.
Solution. The equation of Newton’s second law for a rising body
is mg —|— F = ma where F is the mean value of the air resistance.
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It follows from the equation of motion of a uniformly retarded
body with a iinite velocity that

a ti
Hence,
F=mG-—mg=m
H
Note. In actual fact, the air resistance is not constant and is lpro-
portional at low velocities to the velocity of the body. At high ve oci-
ties the resistance increases in proportion to higher powers of the velo-
city.
64. At the beginning of the squatting motions F < mg and at
the end F > mg.
.S:olutton. When the man begins to squat he relaxes the muscles
in his legs and allows his body to "fall” with a certain acceleration a
J, J, F directed downwards and the lpres-
{,.., ....l...» sure on the platform of the ba ance
· - F becomes such that mg — F= ma
m _m _ 0rF=m(f——ma (i.e., F<mg).
2 '- ' At the en of squatting the man
F » 4 iI;OiI.'1B&SfS thehtension in the glnuscles
. o is egs t us increasingt e pres-
Fig' 203 sure on the platform and creating
the acceleration a directed upwards which is necessary to compensate
for the velocity acquired during squatting. In this case the second
law equation will take the form F — mg = mo and the pressure will
be F = mg 3- ma (i.e., F > mg).
65. F = 4 kgf.
Solution. The acceleration of the table during speed-up is
a -.= -;-:2 m/32
The equation of Newton’s second law for the motion of the table
during speed-up is
where F is the force produced by the mechanisms of the machine and
ff,. = kMg is the force of friction.
Hence,
F=f,,.-|-Ma= 34 kgf
66. o = 200 cm/s°; j= 6 X 10* dyn; F z 1.7 >< 10° a d
2.5 X 10· dyn. “‘“ H
Solution. To determine the tensions, write the equations of New-
ton’s second law for each body separately. Both masses move with the
same acceleratwns a. The forces F and f_(Fig. 203) act on rn, and only
one force f on mz. The second law equations for the masses m, and mz
will take the form
F-j= mia, f= mza
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The solution of these equations gives us the required values
a_,-:1....1;.;. and
m1+m2 ’”1+m2°
3 1 il
, ::3 ·-— F° 7;-*- ° ZZ-—· ,
Solution. Force F will cause the entire system to move with an
acriielvgation a. The equations of Newton’s second law for each block
W1 e
F-fi= vw. fi--1‘z= ma. fz—f¤= ma. fs= ma
where ji, fz, is are the tensions in the threads (Fig. 204).
I is ’ n · t ·
fa f2 J9
777. 772 772
. nI I I
F é
Fig. 204
By solving these equations it is possible to calculate all the ten-
sions as well as the acceleration a with which the system will move.
68. Solution. It is difficult to start a heavy railway train when
the couplings between the freight-cars are tensioned. In this case the
traction of the locomotive has to impart an acceleration to the whole
train at once. lf the train is iirst backed up, the couplings between
the cars will be slackened and the locomotive can with the same {ull
impart much larger accelerations first to the nearest car and t en,
successively, to all the other cars.
69. Solution. lf before the motion begins all the couplings in the
train are tensioned, the break may occur in the couplings of the cars
closest to the locomotive. The tension in these couplings should be
greatest since it is intended to produce an acceleration for the greater
mass of the oars behind all at once (see Problem 68L.
If all the couplings between the cars are first slac ened the break
may occur in any Fart of the train depending on the ratios of the ten-
sions in the coup ings between separate cars.
70. The dynamometer will show a force:
(1) in ~f= 1 1121: (2) fn iv F= 2 kefi ¤¤d
(3) ;n—.:£?]:=1.5 kgf.
Solution. In all three cases the system will move with some acce-
leration a in the direction of the larger force and the dynamometer
will show the bonding force fn acting between the weights. To hud fn,
it is necessary to write the equation of IjIewton’s second law separately
for each weight. For the first case (Fig. 205).
F··fn= Ma. fn-—f= ma
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Hence,
a—---L
-M ·-|- m
and
M
fn ·— F-·· HQFE (F ··})
Since m < M and 1 it may be assumed that
M+ m
fn W f
The other cases can he considered in a similar manner utilizing
J, the equations of Newton’s second
_, mL,. F law and the given ratios of masses.
i il ’ 71. a=!tB?. g.
D ' Q P +0 °
Tn, • • • • • • M P
=·——- 1 k .
F' 205 I P4-Q ( + )
1 .
g Solution. The bodies P and Q
move with accelerations of equa
magnitude a. The body P is acted uson by the force of gravit and
the tension in the thread f, and the bo y Q by the tension in the thread
and the force of friction j, = kQ.
The equation of N ewton’s second law for the motion of each body
will be
P Q
P- =—— , —-k =-—-
I g 4 f Q g a
The solution of these equations determines the values of a and j
__P-kQ __ PQ 1
4- ,,+0 z and 1‘—————·,,_,_Q( +k>
.. mg .
72. a-. 2M +m ,
_ 2M (M -l-m) .
T- 2M -|—m. g'
2Mm
{ :.50-[$7; g, F - 2T
Solution. All the bodies in the system move with accelerations
of equal magnitude a (Fig. 206).
T e left-hand weight M is acted upon by the force of gravity Mg
and the tension in the thread T, and the 1·1ght·hand weight by the force
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of gravity Mg, the pressure of the small weight f and the tension_in
the thread T. The small weight m is acted upon by the force of gravity
mg and the pressure f exerted by the /, / J,
weight M.
For each of the three masses the equa-
tions of N ewton’s second law will be
T — Mg = Ma
Mg + f — T = M a
mg — f = ma
The solutions of these equations deter- T la
mine the values of a, T and f. _ .
The pressure on the axis of the pulley `
will be equal to twice the tension in the Mg M
threads F = 2T. T mi]:
1;-.. .:1/f‘&.fri’2?a.»o.oS. _ l
(P 2-P 1] 8 _ mg
Note. The acceleration of the weights ,- M
can be found from the equations of New- My
ton’s second law (see the solution to Prob- _
. P2-P, Fig. 206
lem 72) and will be oz -17:*3- g, and the
4 z .
time of motion from the kinematic equations of uniformly acce-
lerated motions from rest will be
1/ W
t= —
a
74. The centre of gravity moves down with an acceleration
j:(Pr-—Pz)2 g
(P1+P2)z
Solution. After a time t each weight will be dgsplaged from the
t .....
initial position by a distance S = Lg- Wh61‘6 a = ·pi·j|_·Ii· 8 (SBB the
solution to Problem 72). _ ,
In this case the centre of gravity of the system should obviously
move down a certain distance L from the_1n1t1al position towards
the larger weight (Fig. 207). Upon determining the centre of gravity,
the distances of the centre of gravity from the weights should be inver-
sely proportional to the magnitudes of these weights, 1.e.,
S -4- L ___ lh
S -· L __ P2
11-1218
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162 ANSWERS AND SOLUTIONS
or
E-$-1
P2 P,—P2
1 Pl+P2
P2
. atz
Inserting the value S=-2- , we get
_·Pi—P2 (liz
L*Pi+PzX 2
Comparing this result with the formula for the path of uniformly
accelerated motion and then inserting the values of the acceleration
of the weights we find that the centre of gra-
* - · f vity Should move down with an acceleration
i=%E ¤= (i$%)2g
# The magnitude of the acceleration of the
I centre of gravity is less than that of each
· weight separately. _
. 75. In the first case the system moves w1th
| an acceleration a == 9 cm/s“ and the force of
Q M fricggn petween the block and the cart is f=
<»l;| In the second case the acceleration of the
· , block is a, = 7.5 m/S2 and that of the cart az:
0_""‘ _iL ‘_0 = 0.25 m/S2; the force of friction isi = 0.5 kgf.
T ‘ Solution. First case. The maximum force of
;+°·` p friction at rest, if,. = kmg = 0.5 kgf, is larger
-L B than the flqrcp F applied to tllige blpcki)1Folr
1 T * this reason t e orce F cannot ma e t e oc
_ Slide along the cart. The entire System will
Fig. 207 move as a single whole with a total accelera-
tion a, and the force of friction should be deter-
mined as the magnitude of the bonding force from the equation of
Newton’s second law. The second law equations for the block and
the cart will be
F'*'fjr.; may ff'--;
hence
p MF
a=·-—-:9 cm/sz, f;r=·-———=l80 gf
M —\- m M -{-m
Second CQSB. The maximum force. of friction fj]- is less than t.llB
force F. For this reason the force F will cause the block to slide along
the cart. The block and the cart will have different accelerations ai
and az, The force of friction will have its maximum value jh.: kmg:
= 0.5 kgf during motion.
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The equations of Newton’s second law for the cart and the block
are written as
F — kmg = aim
kmg = M az
Hence,
a,=@:7_5 m/S2
m
.. kms ... 0 25 / 2
G2—7u—-- . III S
76. The thread will be perpendicular to the inclined surface
the whole time the cart is rolling down.
Solution. The cart will roll down with an acceleration a = g sin ot.
For the ball to have the same acceleration the resultant of the
forces of glravity and tension in the thread which are ap-
plied to t e ball (Fig. 208) should be directed parallel to ,·
the inclined surface and equal to F = ma = mg sin oi. {
But, this is possible only when the thread is perpen— m g
dicular to the inclined surface. if
F)/gz-h2• __ `\/[2...hZ cz I
77• , ffr...F-T, mg { ’
Solution. The log moves without acceleration and
therefore the force of friction is equal to the horizontal Fig. 208
component of the force F, i.e.,
;2_h2
, h
The normal pressure will be N =P-Fy—.=P-F-T .
2....};,2
The coefficient of friction k=.--%!-= .
Changing the point of application of the force F only changes thv
point of application of the normal pressure, but does not change 1tS
magnitude. For this reason the force of friction will have the same
value as in the first case.
78. In the second case. _
Note. The normal pressure of the wheelbarrow on the ground _(see
Fig. 209) is N = P — F sin oi in the first case and N' = P + F sin or.
in the second (F is the force applied by the man). _ _
Since N < N' the man has to overcome a greater force of friction
f = kN ’ in the second 0880.
79. F = 269 kgf. _ _ _
Solution. The acceleration of the cart during braking will be
a = -I-? and directed up the slope. The cart is also acted upon by the
tension in the cable F and the force of friction j = kN = kM g cos a
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{64 ANSWERS AND SOLUTIONS
in the same direction_. The component of the force of gravity Mg sin oi
is directed down the 1nclined surface. The equation of N ewton’s second
law for the cart is
F-}—f—Mgsinoi= Mo
Therefore,
F= M(a-|-gsinci)—f:·z¢269 kgf
6 M';.] =
-
/ 7 A 7 ;
/1/=,v—»; xvémg
Fig. 209
80. The ball will be deflected forward and assume a perpendicular
position to the inclined surface.
Solution. As the cart runs onto the inclined surface the cart
acquires an acceleration a in the opposite direction to its motion. The
point of suspension lags behind the ball in its retarded motion. The
accelerations of the ba l and the cart will become the same when the
thread holding the ball is directed along a vertical line to the inclined
surface (see the solution to Problem 76).
6. Power Impulse. Momentum
81. -2mv; Fzw .
Solution. By Newton’s second law, the impulse received by the
ball upon impact against the wall will be
F t = mvz — mv,
where mvz is the momentum of the ball after impact and mv, is the
momentum before impact.
Since the impact reverses the direction of the vector of momentum
(Fig. 210) while preserving its magnitude, the vector of the momentum
change and, therefore, the vector of the 1m(pulse will be 2mv and direct-
ed away from the wall. The force exerte by the ball on the wall is
F = g’¥.whe1·e t is the time of impact.
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82. —mv. _ _
Note. The velocity of the ball after the impact 18 v2 = 0 (see
Problem 81). _ _
83. 2mv sin ot. The vector of the momentum change 18 directed
away from the wall.
Solution. The vector OA (Fig. 211) shows the momentum of the
ball before impact and the vector OB the momentum after 1m¥act.
The vector AB shows the change in the momentum of the ball. I the
vectors OA and OB are resolved into components perpendmular and
:---0 ` --1
I ` { WZ 'U
7Tl’U } (I p { Q E
—*mv ' ’ 1 { I
\ ' E {
-3mv . B 0 A mzvz F
- B"----_— -0
Fig. 210 Fig. 211 Fig. 212
• • , •
parallel to the wall It will obv1ously follow from the equa11ty of t
angles ot and the magnitudes of the vectors OA and OB that the chanlge
in the momentum is caused only by the change 1n the d1rect1on of t e
component perpendicular to the wall, and 18 equal to 2mv sin a.
84. 1/(m,o,)2+.(m2v2)2 at 1,700-@2 .
The sum of the momenta of the balls is depicted by the vector OC
(Fig. 212) which makes an angle oc = 45° with OA and OB.
Ft
85. m kg.
86. F = 102 tons. _ , , .
Solution. The momentum imparted to the tram during time E
by the tractive force of the locomotive will be Ft and by the force o
friction —kPt. By Newton’s second law,
Ft-kpi ==—g—· v
Hence,
Pv
Z •"*"""’ kp!
F gt —I-
87. t z 1 s. .
Solution. The force exerted by the body on the surface IS N =
= P cos ot, the force of friction F, =_ kN_ = kP cos ez and th-irgsultant
force of gravity acting along the 1ncl1ned surface 18 F - 8111 u.
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(Fig. 212) which makes an angle oc = 45° with OA and OB.
Ft
85. m   kg.
86. F = 102 tons. _ , , .
Solution. The momentum imparted to the tram during time E
by the tractive force of the locomotive will be Ft and by the force o
friction —kPt. By Newton’s second law,
Ft-kpi ==—g—· v
Hence,
Pv
Z •"*"""’ kp!
F gt —I-
87. t z 1 s. .
Solution. The force exerted by the body on the surface IS N =
= P cos ot, the force of friction F, =_ kN_ = kP cos ez and th-irgsultant
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According to Newton’s second law,
(F-F,)t=-liv (1)
8
where v is the velocity of the body at the end of descent and t is the
time of descent. Since the initial velocity is zero,
;-Ef...E
"` 2 —` 2
2l
hence v:-T.
Inserting the calculated value of v in equation (1) we find that
t__ I/` 2l __
— g(sin¤t—kcosot)
88. The velocity of the first boat relative to the bank is v, = 1 mf s.
The velocity relative to the second boat is v = 1.5 m/s.
Solution. Each boat receives a momentum Ft = 25 kgf·s. This
imparts to the first boat a velocity v, = -;-2 relative to the bank and
1
to the second boat a velocity v2 = 7-ii . The velocity of the first boat
z
relative to the other is v = v, T}? v2.
Assuming approximately that g = 10 m/s“ we get
vi = I H1/S, vg = 0.5 In/S and v=1.5 m/S
The problem can also be solved if the accelerations of the boats
are calculated from Newton’s second law. The velocities can then be
calculated from the equations of uniformly accelerated motion.
89. The balloon will descend with a velocity u = —AT%_K;z .
_ Solution. Since the sum of the momenta of the bodies in the system
IS zero before the man begins to climb the ladder the ascent of the man
must cause the balloon to descend with a velocity u such that the
zur? of the momenta of the balloon and the man is equal to zero as
e ore.
_ The velocity of_ the man relative to the earth will be w = v — u.
H1s momentum will be mw and that of the balloon Mu. The sum of
the momenta of the man and the balloon will be
m (v — u) — Mu = 0
Hence,
...j'.'L.
u _ M —{-m
80. Solution. The combined centre of mass of the carts before
motion will he on the straight line QO (Fig. 213). By definition the
distances of the carts l, and lg to their centre of mass should at any

166 ANSWERS AND SOLUTIONS
 
According to Newton’s second law,
(F-F,)t=-liv (1)
8
where v is the velocity of the body at the end of descent and t is the
time of descent. Since the initial velocity is zero,
;-Ef...E
"` 2 —` 2
2l
hence v:-T.
Inserting the calculated value of v in equation (1) we find that
t__ I/` 2l __
— g(sin¤t—kcosot)
88. The velocity of the first boat relative to the bank is v, = 1 mf s.
The velocity relative to the second boat is v = 1.5 m/s.
Solution. Each boat receives a momentum Ft = 25 kgf·s. This
imparts to the first boat a velocity v, = -;-2 relative to the bank and
1
to the second boat a velocity v2 = 7-ii . The velocity of the first boat
z
relative to the other is v = v, T}? v2.
Assuming approximately that g = 10 m/s“ we get
vi = I H1/S, vg = 0.5 In/S and v=1.5 m/S
The problem can also be solved if the accelerations of the boats
are calculated from Newton’s second law. The velocities can then be
calculated from the equations of uniformly accelerated motion.
89. The balloon will descend with a velocity u = —AT%_K;z .
_ Solution. Since the sum of the momenta of the bodies in the system
IS zero before the man begins to climb the ladder the ascent of the man
must cause the balloon to descend with a velocity u such that the
zur? of the momenta of the balloon and the man is equal to zero as
e ore.
_ The velocity of_ the man relative to the earth will be w = v — u.
H1s momentum will be mw and that of the balloon Mu. The sum of
the momenta of the man and the balloon will be
m (v — u) — Mu = 0
Hence,
...j'.'L.
u _ M —{-m
80. Solution. The combined centre of mass of the carts before
motion will he on the straight line QO (Fig. 213). By definition the
distances of the carts l, and lg to their centre of mass should at any





CHAPTER I. MECHANICS 167

moment of time t be inversely proportional to the masses of the
carts, i.e.,
1:,1;
lz mi
The distances covered by the carts during the time t will be
S1 '= vit and Sg ·“= vzt
iqet,
.-2;:2
S2 U2
{O
U} { 7):
•1•.!•§•
x A7A?%’,S’4, , ’ A,[/4/2/ /
T
OI
Fig. 213
The velocities imparted to the carts by the action of the compressed
spring will, by Newton’s second law, be equal to
Fr F1:
Di-·'=·; 8IId U2=···—·
mi mg
Therefore,
Si__Ui__FT _m2_m2__li
$2.-02-_mi • FT—m·{ itz
and the distances of the carts from the straight line OO satisfy the
same ratio as the distances from the centre of gravity, i.e., the centre
of gravity of the carts is always on the straight line O0.
This result can also be obtained directly from the law of conserva-
tion of momentum which gives in this case
vi mz
= 0I' —-=—-
miUi m2U2 U2 mi
QL ,,,,_ :.- -12.5 m/s.
mi
Solution. The sum of momenta of the fragments from the grenade
is mivo -|- mzvo before the burst and mw, -|- mzvz after the burst.
Since the change in the momenta of the fragments is caused only by
the internal forces it should follow from the law of conservation of
momentum that
Tnil}0 ·|·· Ulgl}0 —"; Ul-{U1 '+ mgvz
hence
v,=?...-—"‘*”°""’;,j”°'”‘°”“ = -12.5 mls
1
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The minus sign in the velocity shows that after the burst the
smaller fragment begins to move in the opposite direction to the initial
motion of the grenade.
s '" 2 uz ‘ 2 soo
• ::: ··-— ·-·'*· Sl i m.
92 (M ) g H Q
2
Note. The range of the projectile will be S = ig- sin 2ot (see the
solution to Problem 40). The initial velocity of the projectile is deter-
mined from the law of conservation of momentum and is
m
UO ’;··h··{—· LL
where rn is the mass of the powder gases and M is the mass of the pro-
jectile.
93. u = 33 cm/s; the cart will roll to the right.
Solution. If the vectors directed to the right are assumed to be
positive and those directed to the left negative the sum of the momenta
of the ball and the cart before they meet will be mv, —— M uz and after
they meet, mu —|— Mu, or
_ mvi—-Mvz __
u- M+m ...0.33 m/s
94 v ~2 m/s· v =—-I-`L”2——· the velocity at the end of the
° 3 ’ N M -Nm ’
first second u as 49 km/hr.
Solution. Denoting the velocity of the rocket by v, after the ejection
of the first portion of gas, by uz after the second portion, by va after
the third and by UN after the N-th portion and utilizing the law of
conservation of momentum we obtain:
f for the velocity of the rocket after the ejection of the first portion
o gas
(M-—m) v1—mv==O or
after the second portion
after the third portion
The velocity of the rocket after the N-th ejection is
_ N mv
”N "‘ M~1vm
2
95. wi m/s.
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Note. See the solution to the previous problem.
ee. in:.-"}$ .»s 3.5 m/S.
Solution. In determining the velocity of recoil, consider only the
horizontal component of the velocity of the cannon-ball, .since the
recoil caused by the vertical component of this velocity will be damped
by the reaction forces of the earth.
The horizontal component of the velocity of the ball v = vo cos oi.
According to the law of conservation of momentum, we have: M v, L-.
= mvx, hence
U _ mvx _ mvocosoi
*“ M"* “M _°
97 _ P cos ot
. v--—————P+Q .
Note. See the solution to Problem 96.
7. Work. Energy. Power
2 2
98. F=-%;§ z 1,250 kgf.
Solution. At the moment of firing the velocity of the barrel u is
determined from the law of conservation of momentum and will be
equal to
,,-2
_ M
where rn and M are the masses of the shell and the gun barrel. The
2
kinetic energy @ imparted to the barrel at the moment of firing will
be completely expended on the work against the braking force A = FS,
i.e., the following equality will be true
M uz
1-—¤¤——§ S
2 F
Hence,
M uz mzvz
F 2S 2MS i’ 5 kg!
99. F:-é'? (vg-p2gh):1,25o kgr.
Solution. At the end of fall the kinetic energy of the body will
2
be E =%-|- rngh where rn is the mass of the body.
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The mean resistance of the sand can be determined from the equa-
tion of the law of conservation of energy FS = E. Hence
_ E mv§ mgh
The problem can also be solved with the aid of Newton’S second
law and by calculating the acceleration of the body as it penetrates
into the sand.
The velocity of the body as it hits the earth is v=`\/vg-{-2gh.
. . . vz 12%-I-2gh
The accelerat1on of the body in the sand is a=Tz§=--2f
and the sand resistance
F: nzazing- (03 -|-2gh)
Since the weight mg is small compared with F, its action during
the motion of the body in the sand is neglected.
h h Z
im kl"", ···"**') •
Solution. The sledge at the top of the hill has a potential energy
E = mgh. During motion this energy is expended on the work A,
to overcome the forces of friction over the path DC and on the work A2
to overcome these forces over the path CB, i.e.,
E = mgh = A, + A2
The force of friction F, over the path DC
Fi=kmg ——·L1
‘\/g2.}.h2
where l is the length of AC. The work will be
Ai = F,DC = klmg
For the path CB the force of friction F2 = kmg and the work is
Ag = FZCB = kmg (S -— l)
Hence,
and mgh=Ai-|-A2=mgkS
h
k==-S-
The equation of Newton’s second law for the motion of the sledge
over the path DC will be
mg —·—·i...;—....··· — Fg = may
1/g2.|.h2
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and therefore ap:—-;}.3;-..- (I--L) . Sirwe J-<1 a >0 and
1/[2+hZ S S ’ *
the sledge will move over the path DC with a uniformly accelera-
ted motion.
The acceleration over the path CB is oz == -—kg and the sledge moves
with a uniformly retarded motion.
101. (1) When the coefiicient of friction is constant the value
of S will not change if the hill is more sloping.
(2) The sledge will not move. With an angle of inclination tan on =
h . . .
=-3,- = k, the force of friction equal1zes the component of the force
of gravity directed along the inclined surface,
102. The potential energy En of the parallelepiped in various
positions will be:
E, = 2mgl when it rests on the small side.
E2 = mgl when it rests on the middle side.
E3 = gg! when it rests on the large side.
The most stable position corresponding to the body’s minimum
potential energy will be in the last of the three cases.
103. A z 375 kgf-m.
Solution. The work done against the air resistance is equal to the
loss of the kinetic energy of the bullet:
2
A:-{-7%--—£l-*5-:-[§(v§ -»¤) ,*:*,375 kgs-m
104. Solution. ln the first case the boy throwing the stone does
an amount of work
_ mv?
Ar 2
If, in the second case, he throws the stone with the same force,
he will do the same work but this work is now expended to 1mpart
kinetic energy to the stone and to the boy. Therefore,
mv? _ nw§ M uz 1
2 __ 2 J'- 2 ( )
whe1·e u is the velocity with which the boy moves.
By the law of conservation of momentum,
ITLU2 '—: Mu
Solving these exguations it is possible to find the velocity of the
stone in the secon case
M
U2=U1 • U2 <v4
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and the velocity of the boy after he has thrown the stone
1/ ”‘”
u=v -——-——-—
1 M (M —|-m)
The velocity of the stone relative to the boy is
v=v2—|—u=v, I/-1%*;,1-, v> v,
Since the power N = Fv and the stone moves faster relative to
the boy in the Second case than in the first (v > v,), the boy should
develop a greateipfower in the second case.
105. v, = 1 s; A, = 15 kgf-m; A2 = 37.5 kgf-m; N, =
= 10 kgf—m/S and N2 = 25 kgf-m/S.
Solution. In both cases the man imparts the same acceleration
a = Tg- to the boat A and therefore the velocity of the boat A (v, =
1
-.: at = % t = 1 m/S) will be the Same in both cases. In the first
1 2
case the work done by the man is A, = % = 15 kgf—m and in the
second case
2 2
A2 :2%+2%;:37.5 kgf-m
where v2 = -’§·t is the velocity of the second boat by the end of the
z
third second. The power developed by the man at the end of the third
second in the first case is
N, = Fv, = 10 kgf-m/S
and in the second
N2 '—= F (U1 + U2) = kgf*H]./S
if N2 > N,.
106. Solution. The velocity of the body will be less in the second
case since the body’s potential energy at a height h is expended in the
first case to impart kinetic energy to the body alone, whilst in the se-
cond case it IS used to impart kinetic energy to the body and the prism
at the same time.
107. tan Br-= tan oz.
Solution. Let us denote the velocity of the prism (Fig. 214) by u,
the horizontal and vertical components of the load velocity v relative
to the earth by vx and vy and the angle between the direction of motion
of thB load and the h0l'iZOIlt.&l B, assuming
t Dy 1
an B- vx < >
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Since the prism is acted upon in a vertical direction by the reaction
of the support in addition to the load, the law of conservation of
momentum may be applied only to the horizontal components of the
velocity of the load and the prism when the behaviour of the "load-
p)rism" system is considered. The velocities u and vx will obviously
e linked by the ratio •
Mu =mvx (2)
Let the load be situated at the point A of the prism at a certain
moment of time (Fig. 215). During the first second a ter this the prism
v RZ `~—`
· = n \\ ua A ve
”é I Y
(y vg iv l \ UV
“ ¥ IL
x J /1'///.;./·’>/i," 7///71 /1 . /,11, /1/ ///2//1 ///
Fig. 214 Fig. 215
has moved u cm to the left and the load has been displaced vx cm
horizontally to the right and by vy cm vertically. All these displace-
ments should be such as to return the load again to the prism at a cer-
tain point B. Therefore, the velocities u, vx and vy should satisfy
the laws of conservation of energy and momentum and also the ratio
Uy
=-‘ t3I1 CZ
This ratio expresses the condition that the moving load is always
located on the prism.
We fund from (2) that u : § vx.
Inserting the value of u into equation (3), utilizing (1) and perform-
ing simple transformations we get
Uy m-{-M
Z **' ;‘*'1""" t
tan B vx M an or
As we would expect, tan B > tan on and B_> oc. _ _
The velocity of the load down the moving prism is directed at
a larger angle to the horizontal than during descent from a stationary
prism. Using the law of conservation of energy and knowing the height
of the initial position of the load it is possible to calculate the velocities
u and v. _ _
108. After the impact the balls will exchange their velocities.
Solution. If the masses of the balls are denoted by mi and mz
and the velocities after impact by as and y, we can obtain from the law
of conservation of momentum
maui + mzvz = mw? + mzy (1)
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of conservation of momentum
maui + mzvz = mw? + mzy (1)
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Applying the law of conservation of energy and assuming that the
total kinetic energy of the balls does not change after the impact we
may write
m,v§ m2v§ __ m1.1:2 mzyz
2" ‘+"_‘2 ‘ _f +" 2 ‘ (2)
Solving equations (1) and (2) simultaneously and using mi =
= mz = m, we get y = v, and a: = v2, i.e., perfectly elastic balls of
equal mass will exchange their velocities after impact.
If the first ball moves from the left to the right with velocity v,
before impact, it will move in the opposite direction with velocity vz
after impact.
109. M2 = 300 kg.
Solution.
Momentum
before meeting ’ after meeting
First boat (M 1-|-m) v M iv
Second boat -M2v -(M2-|-m)v2
The momentum of the two boats before the load is shifted is equal
to their momentum after _the transfer of the load, i.e.,
(M1+ m)v···MzU= M1v“(M2+m)v2
Hence, M2= =300 kg.
U—U2
The energy of the boats before they meet is
E (M1+Mz+m)v2
1:-__—'-2_-——
and after reshifting the load the energy of the boats is
__ M10? (Mz+m) vi
E2 ··~ T + -5*
_ The energy has diminished due to the transfer of a part of the energy
1Dto heat when the velocities of the load and the second boat become
the same.
h
110. N=—”%-==49>< 1011 erg/s:/490 kW.
111. F = 4,896 kgf.
Solution. The useful power N2 = kN, = Fu. Hence,
F N I
Ng=—i;Z— and F:-§;%4,896 kgf
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112. The power N == 4.2 hp.
Solution. The force of friction F between the shoes and the shaft
is determined from the equilibrium condition of the lever in the absorp—
tion dynamometer: the moment of the force F is equal to the moment
of the force Q:
Fr = Ql
and hence
F:
r
The velocity of the points on the surface of the shaft will be
v = 2:lWr
where v = £ is the number of shaft revolutions per second
N=Fv=·-g-Q-:?;£=2:n;Qvl at 4.2 hp
113. N = 11.8 kgf-m/s.
H4. The maximum power should be developed by the engine at
the end of the take-off run and equal to N = Fv where F is the tractive
force of the propellers which, as is given in the problem, remains con-
stant during the entire time of the run.
The force F is determined from the equation of Newton’s second
law for the take-off run:
F —- kP = 5- (1
8
. v2
The acceleration azg- and therefore
Pvz
and the power is
Pv3
H5. N z 1 hp.
Solution. The force of friction overcome during machining is
F, = kF, the velocity of the rim of the stone is v = rt dn and the
required power
N = Fiv = lcF at dn
H6. fz 490 kgf; F z 980 kgf.
Note. The pulley will rotate under the action of a force equal
to F —— j. The velocity of the pulley rim IS v = 2m·n and the power
N = (F —- j) 2nrn. Since it is given in the problem that F = 2f, then
N N
= ,.;,_, F—·.:—-—
f 2:rtrn and Jtrn
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8. Dynamics of a Point Moving in a Circle
117. A0 = AH; = 25 cm; OB = 75 cm.
Solution. The centripetal force acting on M will be F1 = co2Mx
(Fig. 216). The force acting on m will be F2 = mzm. (l — x).
From the given conditions F, must
*___I l_x be equal to F2, i.e.,
` I co2M:1: = mzm (I —— sc)
M ” # m °"
A- T __ __ ml
A » ,2 8 x..AO---—-M+m
Fig. 216 These expressions also determine the
distances from the balls to the centre
of gravity of the system. The tensions in the threads are the same
when the centre of rotation coincides with the centre of gravity
of the system. _
118. co= I/%=7 s·1.
Solution. The balls will be in equilibrium when the centripetal
force acting on the ball B is equal to the weight of the ball A, i.e.,
when rmzm = mg. Hence, on = The equilibrium will be
unstable, __
ue. vo > 1/gn.
Solution. The velocity of the washer vo should be such that the
parabolic path it takes under the force of gravity can pass outside
the hemisphere, only touching it at the I
upper point A (Fig. 217). Ai U
When the washer moves along a pa- _ °
rabola its vertical acceleration at the `\
point A will be g and the centripetal \\
acceleration for motion in a circle of x
2 .
radius R withavelocity vo will be ' '
2 F' . 217
If g Q l% the curvature of the pa- lg
rabola will be less than the curvature of the surface of the hemi-
sphere and the parabola will be outside the hemisphere, i.e., the wash-
er williiot slide over the hemisphere at velocities vo when vo ,>
> Vail- 4 ZR
at
120. a:-f¥—=0.033 m/sz (T is the time for one complete revo-
lution of the _Earth).
The reduction 1n the weight of bodies on the equator caused by the
rtitation of the Earth comes approximately to 0.0034 of the force of
a raction.
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\/ 2gh _ cozllz
121. TZ—·
Solution. (1) If the particles of water emerge from the pump with
velocity v they can rise to such a height h at which all their kinetic
energy will pass into potential energy, i.e., the following will alwayg
be true:
v2 = 2gh
Assuming that the velocity of the water particles is equal to the linear
velocity of the ends of the pump vanes it is possible to determine the
number of revolutions n o the pump
n _ v = VE
`_ 2:tR 2:rtR
(2) When equilibrium is established and the water rises in the pipe
to the maximum height, the pressure at the exit of the pump will
become equal to the weight of the water column of
height h, i.e.,
2 2 S
P: gh = % = 22* R2 I
R
where oi = 2rcn is the angular velocity of the water
particles in the pump.
Inside the pump, during motion from the axis to p D
the ends of the vanes, the pressure will grow in pro- Z "
portion to the square of the distance to the axis.
(3) To calculate the centripetal force, let us sepa-
rate a thin layer of water between the cylinders of
radii R and r (Fig. 218). The thickness of the layer Fig. 218
S = R - r should be small enough for the velocities
of all the particles of this layer to be regarded as identical. Each
element of the water volume supported on 1 cm2 of the surface of the
internal cylinder r will be acted upon by a force equal to the pressure
difference 2 2 2 2 2
F;-p,..p2=.°l;{..-.£°é°.:_£.°i. (R2-,-2)
As the mass of the water in this volume is m = dS >< 1 = R —_r
(where d = 1 is the density of the water) and assuming (since S is
small) that R + r = 2R, we get
2 2
F=£-of (R-}—r) (R-r)=—T;— (R-|—r) m meo2R
i.e., the (pressures are distributed in a centrifugal pump so that the
pressure ifierence acting on each layer is enough to produce the requir-
ed centripetal accelerations of the water particles present in this layer_
oaznpnz E 4
122. Fir:-—-;-:0.08 kgf; co:-l/-7-2-:2.2 -7;-
12-1218
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Solution. The centripetal acceleration for a moving load is only
provided by the force of friction and in the first case
2 2
F,, Z mm2R :4:rt2Rmn2 Z £gl
The load will begin to slide with that angular velocity at which
the centripetal force becomes equal to the maximum force of friction
at rest, i.e., when
kP = m0)2R
or
_ kP __]/H
°’ · l/H · w
__ lofo . _ mwzfolo
123. RZ f0__mm2 , FZ f0_mwg .
Solution. Assume that the length of the cord has increased by l, cm
Then the radius of the circle along which the ball will move is R =
= lo + l, and the tension in the cord is F = fol,. When the ball
rotates with an angular velocity co it will have a centripetal accele-
ration m’R = of (lo -{- l,) and by Newton’s second law F = mo>2R.
Inserting the values of F and oJ2R in N ewton’s second law equation
we obtain
foli = mwz (lo + Z1)
or
I — ?Tl0)2l0
1 — f0—m<·>2
Hence,
_ _ lofo
R-lo+l1 — f0_mm2
and
_ __ mwzfolo
Pvz Pvz
• F 1 ° z —·;—· ‘ ; ——· ,
124 1 P, F2 P gR , F3 P-}-gR
Solution. The car is acted upon in the vertical direction by two
forces: the weight P and the reaction of the support F.
(1) When _the car runs over a horizontal Hat bridge there are no
acceleratmns 1n the vertical direction and the sum of the forces acting
on the car 1n th1s direction should by Newton’s second law be equal
to zero
P—F1=O01‘Fi=P
_ (2) When the car runs over a convex bridge a centripetal accelera-
1:1011 will act vert1cally downwards and therefore
mvz
P·F2:T
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or
p .2
Fz=P—Ei/R-. Fz<I’
i.e., the pressure exerted hy the car on the bridge is less than the
weight of the car.
(3) Similarly, if the car crosses a concave bridge it will have an
acceleration directed upwards and the pressure can be determined
from the equation
mvz
F3-- P ='- T
mvz Pu?
The pressure on the bridge is larger than the weight of the car.
125. F1= 4P; F2 = 6P.
Solution. At the highest point of the loop the weight P and the
reaction of the support acting on the pi-
gcitg are both directed downwards (Fig. _
)• if —`\\
The pil0t’s centripetal acceleration // plrlilvz ~__
2 -
BE is also directed downwards. lf LPA
According to Newton’s second law, _l` ll '— _`-T
\ \\ A % // .‘
F4+P=T *\Q:;§—’°} liiéir,
OI` p
F -—E P-307kf~4P ·
1-gR- — ·8~ Fig. 219
At the lower point of the loop the acceleration a = 1;; and the force F2
are directed upwards. The equation of Newton’s second law will have
the form
mvz

and the force is
F2=p+E.;457 kgf xs 6P
glf
126. F : 3mg = 3P. _ _ _
Solution. The pendulum passes through the equilibrium position
moving along the arc of a circle of radius l with a velocity v. At this
moment the bob of the pendulum will possess a centripetal accelera-
12*
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180 Auswmns AND SOLUTIONS

tion a = Qi directed upwards. This acceleration is provided by the
joint action of the force of gravity and the tension in the thread
(Fig. 220). By Newton’s second law,
2
F -— mg = m. %
and hence 2
The velocity v is determined from the law of conservation of energy
and is
v= V Zgl
and therefore
mvz
F=mg—|-—-T-=3m.g=3P
where P is the weight of the bob. The thread must be able to support
a load equal to three times the weight of the bob.
\\\\ ye
\&\\
fra . i »
\\ '/// 's". --*-2/
v "+ “/
mv mg ’/
Fig. 220 Fig. 221
127. G = 60°.
Solution. Use Newton’s second law to find the velocity when the
bobbpasse? léhrough the position of equilibrium (see the solution to
Pro em 2 )
v2;__(F —mmg) I :6,1
From the equation of the law of conservation of energy, LIZ;-E : mgh,
it isz posiible to {ind the height from which the bob dropped: hz
v
_ iz- 1
cosot~ l -- 2
128. ot aw 48°11'.
Solution. In any intermediate position the ball is acted upon
along the thread by the tension in the thread F and the com onent
oi the force of gravity mg cos on (Fig. 221). The acceleration of the ball
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2
% (where v2 = 2gl cos ot) will be in the same direction. Therefore
(see the solution to Problem 126),
F—mgcosoc=EL7L?’!—cosoz=<2mgcos¢x
Knowing that F=2mg, we obtain
F 2
COS (I = Egg **5*5*
129. co = 5.4 rad/s; S as 4.24 m. _
Solution. The tension in the thread will be greater when the stone
passes through the bottom point of the circle. The equation of N ewton’s
second law at this moment will be F -— mg = mcozl. Hence, the angu-
lar velocity at which the thread is broken will be
F -— mg
‘°:V iw
The velocity of the stone at the moment the thread is broken will be
directed horizontally and equal to
v = wl = L
ml
. 2(h—l) . .
The range of the stone 1S S = vt where t= _ -?-—- 1S the time
of free fall from the height (h - l)
and therefore
,...,_........ F
g Tg- '
:,1/2(h—i)(F-—mg) ¤: pjf//~\\ \
mgl U I ’ \ mg
I / / / /4
1.30•
Solution. For the body to lie Fig. 222
on the surface of the hemisphere the _ _ _ _
sum of the forces acting on it at any point in the direction of tgie
radius should be enough to produce the centripetal acceleration-gy .
The velocity of the body at any point is determined from the ratio
v2 = 2gh, where h is the vertical distance of the body from the top
of the hemisphere. The body is acted upon along the radius of the
hemisphere by the reaction of the support F and the component of
the force of gravity mg cos on (Fig. 222). Hence,
2 2 h
mg c0soz.—-F=-E·lI%-=%—
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. v2 . .
As the body moves, the acceleration? 1S constantly growing but
the force F diminishing faster than mg cos on provides the increase
in the resultant necessary to build ug the higher acceleration.
At a certain point the force F will ecome zero and a further growth
2
in the acceleration %will no longer be provided by the forces acting
on the body. It is precisely at this moment that the body will be de-
tached from the hemisphere.
Thus, the condition for the body to be detached from the hemi-
sphere is F = 0 or
2m,gh
Hlg COS G ; T"
Considering that
co —-R_h
S G —· T
we find that the body will be detached at a distance from the top equal
to
R
” · T
Hence, 2
H : -5 R
131. F = 3mg (1 -- cos oc).
Note. The problem can be solved similarly to Problems 129 and 130.
Newton’s second law and the law of conservation of energy give
us the equations
2
F -}— mg cos oc = %{L
and
122: gR (3—2cosot)
Hence,
F= mg(3 -2 cosot—cosoc) = 3mg(1—-—c0sa)
132. F = 3mg (1 —|— cos B).
5 _ o 50
Solution. The height at which the ball will be detached from the
chute is determined in the same way as in Problem 130 on the basis
of Newton’s second law and is equa to
5
Hi = -5 R
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The ball will move from the point C (Fig. 223) in a parabola with
initial velocity
~»=V2T=1/¥
directed at an angle ol which can be determined from the equation
as -..;*4 -2. -··”° ·
e- R ~· 3 : A -- nl.
vI___ ____.s `li
At the maximum elevation of 6, ·I _ 'Q
the parabola the velocity of the _\ zz; 5* ° `_ "` " ‘
ball will be equal to the horizon- \_/1
tal component of velocity vo, i.e., . - .3....-
vx=v0C0Sd.== I T Q"
ni 1/%- 1/ $373 l
‘ 3 3 “ 27 Z l
It follows from the law of con- Fig. 223
servation of energy that at this mo-
ment the ball should be at such a distance hg along the vertical from
the point A that vg = 2ghz. Hence,
-2i-i
bz"` 2g -27 R
and
50
5 Hz .. 2R-—-hz ..§ R
2
134. Hi Z W l.
Note. Up to the height H1 = gl (Fig. 224) the ball will move
over an arc of a circle of radius -% . After this, the ball will move in
2
a parabola up to the height Hz = E-gl. This problem is solved in
the same way as Problem 133.
135. h1=·%l.
Solution. The centripetal acceleration of the ball at the upper
point C (Fig. 225) of a circle of radius hz sgould be not less than the
acceleration of the force of gravity, i.e., %- > g. The minimum velo-
2
city at the point C should be
U:}/2g (l-23,,)
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and therefore
5h2.—=2l or hzzél
136. The ball suspended on the rigid thread will have a higher
velocity.
Solution. Initially the potential energy of both balls is the same
and equal to mgl. In the case of the rigid thread all this energy is
expended on imparting kinetic energy to the ball. As the ball passes
Oi ll ix
l - .4.-;.b__ l · I
l `\` l \\l é`
`* , \
l i - \\ \\ ai
S? \ _ _ ·· ‘
l 5 S
l Y
1
Fig. 224 Fig. 225
through the point of equilibrium its velocity will be determined in
this case on the basis of the law of conservation of energy from the
ratio
2 _
mgl :2-Egg- , vizvzgl
For the ball suspended on the rubber cord only a part of its poten-
tial energy is changed into kinetic energy, the rest being changed into
the potential energy of deformation of the rubber cord.
2
Therefore, -2;-% <mgl and v2<vi.
137. o,:1/§§Z;v2:]/-%g-5:2 1/%- .
Solution. In the hrst case the law of conservation of energy
gives us
2
-g%l;L:2:ngl, v§=2gl
In the second case the initial store of energy of the mass C will be
mv§
T and of the mass B
Ul U2 2 L
2 ( 2 ) vg 2
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After dedection the total store of energy of both masses is equal
to 2mgl.
It follows from the law of conservation of energy that
mv§ mv§ L_
and therefore
12 12
VE-“=§·8'l» vz=l/g gl
vz
138. tanoizzi-— and oi=16°42'.
Solution. The cyclist is acted upon by three forces (Fig. 226):
his weight mg applied through the centre of gravity, the normal
pressure (reaction of support) N = mg directed vertically upwards
and applied through the point A and the
force of friction F),. directed towards the E
centre of the circle along which the cyclist
rides. The force of friction Fi,. takes a 0 ,
value such that, when added to the · _ [ •
normal pressure N, it produces the force )@ J9 0 {F
AB directed along the line OA dpassing v ,
through the centre of gravity, an , when —. f' /
added to the force mg, produces the re- ‘- ¤ . my
sultant F = Fi, which is directed ho- , N V {F
rizontally and is great enough to provide _ __ __ {Q y
_ _ U2 was Asm .<.Q<-x ~A}®>r§—ss<.m gs. rs
the centripetal accelerat1on — of the _
_ R Fig. 226
cyclist. The resultant F of the forces
mg, N and Fi,. may also be expressed by the weight and the angle
of inclination oi of the cyclist. 2
According to Newton’s second law, F =mg tan<z= gig- and there-
2
fore tanoi=§- , oi:16°42’.
2
139. R = 7%: 21.8 m; tan on = k; ot = 16°42’.
Solution. The resultant of all the forces applied to the bicycle is
tfgual to the force of friction Fi,. (see the solution to the previous pro-
em).
Since the maximum force of fricétion is Fi,. = kmg, the minimum
radius of curvature will be R = 7% . The maximum angle at which
the bicycle must be inclined can be determined from the condition
Ff,. = mg tan cz, MDG = k
i40• Umax 1 m/8. _ •
Solution. When the railway carriage runs on horizontal rails along
a curve the pressure exerted on the outer rail will always be larger
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than on the inner one. This difference of pressures will be increased
as the speed of the carriage increases. When the carriage runs at the
maximum permissible speed the entire pressure of the carriage is
applied to t e rail A ——the outer rail relative to the centre of curvature.
The rail A produces two forces: the normal pressure N = mg and
the lateral force F. Together with the force of gravity, these forces
provide the necessary accelerations of the carriage.
Two different cases are possible:
(a) The carriage runs along the curve with a speed slightly legs
than the critical speed. In this case the centripetal accelerationijhy
and the force F are small. The point of
i application of the resultant of all the three
forces lies above the centre of gravity O
(Fig. 227). The resultant F not only
produces the centri etal acceleration but
also tends to turn the carriage clockwise
around the ientre pf gravlity and press it
again to t e rai B. T e movement of
_ thebizarriage along the curve will be
sta e.
(b) The s eed v is larger than the
.. critical speedt the force F is high and
{ ___ , I the goint of application of the resultant
l ll ' ..-—* lies elow the centre of gravity. The re-
·! if ' sultant will turn the carriage anti-clock-
, · A / A wise around the centre of gravity. The
J B carriage will tend _to topple over and
stable motion at this speed is impossible.
Fig_ 227 The maximum possible speed of the
carriage along the curve will obviously
correspond to the case when the point of application of the resultant
of all tlhe forces coincides with the centre of gravity of the carriage,
1.e., w en
F l mvz l
mg M 2h ’ mgR _ 2h
lgR
U:]/-—-:31.3 II]/S
2h
141. When the longitudinal gradient is measured the spi1·it level
will only show correct readings if the train moves uniformly.
if the transverse gradient is measured the readings of the spirit
level will only be true when the train moves in a straight line.
142. F z 5.025 kgf.
Solution. The load suspended from a spring balance in a carriage
running along a curve is acted upon by two forces: its weight P and
the tension in the spring F (Fig. 228).2The resultant of these two
forces produces the centripetal force -,7%- directed horizontally. It
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follows from the drawing that
2: 2 mvz )2
F P +(-R
Hence, _
F:]/p¤+(2§.)2~s.02s kgr
143. on no 22°; F as 320 kgf.
Solution. When the aircraft makes a turn in a horizontal plane,
. F -—·-·- Fy
I
r { G //
imp:
I [Q `
/ II l ,
//
p ’ my
Fig. 22*8 Fig. 229
the horizontal and vertical components of the lift F should be related
by the following ratios (Fig. 229):
2
Fx=Fsinot=-{-ni%, Fy=Fc0sot=.-mg F 0:
from which we get { _
tan on- U2 E
F gf? A /'.mo3p.-—lc
and ///
F=VF?e+·F%,= · +(mg>2 4.-__l_
<;_.;
144. on z 8 s·1. _
Solution. The centripetal acceleration of the F 18- 230
ball is caused by the joint action of its weight
P and the tension F in the thread (Fig. 230). The drawing shows that
mo>2R = P tan on = mg tan on
where
R = r -}- l sin oc
from which we get
_ 1/ g tan on
"’" " R"
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or
.. 44.%;- -1
(0-*1/r+lsinoi_8 S
T
145. T=2J`[ .
Solution. The centripetal force m<n2R required to move the ball
along a circle of radius R = l sin oi may be expressed in terms of the
force of gravity (see the solution to Problems 142-144 and Fig. 230):
mg tan oi = meozl sin oi
from which
m2:...£’._.
lcosoi
Since co = $2; where T is the time for one complete revolution
and lcos on = h is the distance from the point of suspensicm to the
surface of the circle along which the ball moves, T = 2:1 . This
y expression corresponds to the formula
U _, describing the period of a theoretical
pendulum of length h.
i
{ 9. Statics
W, } [G 146.12:0.
` 1 i " 14s.r,=-2;:10 kgr; F.:
A ,5, 0 gy B 1/412-L2
f \ Z-—£-— :6 kgs.
E ,,z> \ B 2`\/4l2—-L2
2 2 Solution. The weight of the rod P
P acting through the centre of gravity of
the rod may be replaced by two equal
Fig. 231 forces gapplied at the ends of the rod.
In the first case (Fig. 231) the force %
applied to the rod at the pointA should be resolved into two components:
F,-—in the direction of the extension of the rope AC, and F2—acting
along the rod and directed towards the centre of gravity of the rod.
As the triangle of forces and the triangle AOC are similar we get for
the tension in the rope T, and the force F2:
Pl
2]/,2 L2 1/412-1.2
-7
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I/ L2 2 1/412-L2
;2__.
4
The force F2 and the force Fg applied at the point B compress the
rod with a force of 6 kgf.
In the second case the tension in the rope will be the same as in
the fiillstfcase. The forces Fg and F2 will extend the rod AB with a force
o 6 g . _
149. At or > 120°. M l B
150. Q = 200 kgf. , [
Note. The magnitude of the force is determined H
from the similarity of triangles OCB and OKM [ i /“
I
(Fig. 232) and is equal to Q = Q; . [ { /4 Q- C
i
151. T = —§ cos on. When oc changes from 0 to `xx E x\
90° the tension in the rope T diminishes from `\\% \\
ig- to zero. N \ A
Note. The ma`gnitude of the force T is determined
from the condition of equilibrium of the board. --:2.,;
The sum of the moments of the forces T and P
with respect to the point A should be equal to
zero, i.e., Tl=P L cos on where l = AB is the an
2 P Fig. 232
length of the board; hence, T.: Tees oz.
152. The weight of the beam is Qi: 300 kgf.
Solution. The weight of the over anging end of the beam equal
to % acts through the point 0 (Fig. 233). The equation of the moments
of the forces with respect to the point C
,___3l____,___|l will be
I 3 { if 3 3 z Q 1
' 1”'” ‘2;Q><€’=Z"+TX‘€
Q (where l is the length of the beam) and
4‘ therefore Q = P.
yég Solution. Let us denote thc length of
4 the arms of the balance beam by l, and
Fi 233 12. The equations of the moments are:
g' " for the first weighing, Ql, = Pilz
for the second weighing, Pzli = Qlz.
We find from the two equations
Q2=P,P2 or Q=l/P,P2
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154. The left—hand pan will move down.
Solution. The moment of the force of gravity is M3 = P é- The
moment of the force F with which the man pulls the rope is M 3 =
=F-é cos cz; the force of pressure exerted by the man on the pan is
P-F cos ot and the moment of this force M3 = (P — F cos oi)-;
The sum of the moments of the forces acting on the right·hand
arm of the beam of the balance is M3 -|- M3 = E-B? -|-
-|- (P — F cos oi) . Obviously, M 3 > M3 -|- M3 and therefore the
left-hand Eau will move down.
155. T e tensioning force is Px = P cos oz. z 86.6 kgf. The deflect-
ing force is Py = P sin on = 50 kgf.
156. The length of the overhanging edges of the bricks will beg- ,
é- , écounting from the top brick.
_ Solutions. Since the bricks are homogeneous the point of applica-
tion of the weight of each brick will lie half way along its ength.
Consequently, the first top brick will still be in equilibrium with
respect to the second when its centre
. ci; -3 of gravity is arranged above the
__? ‘ ' ‘ edges of the second brick, i.e., the ma-
; ' p ximum length of thc; free edge of the
j_.;;g§.j.·¤_.; first brick will be -2- .
p / P The centre of gravity of the first
I 2 and second bricks taken together will be
3P at a distance éfrom the edge of the
Fig. 234 second brick. This is precisely the
length by which the second brick may
be displaced with respect to a third.
The centre of gravity of three bricks lies on the line AC and its
position can be determined from the equation P (-g-:) = 2P:c
(Fig; 234) from which we get x = , i.e., the third brick may jut out
over a fourth by not more than % of its length.
157. The equilibrium will be disturbed, but can be restored by
applying to the right—hand end of the beam a force F = ig- equal
to the weight of the part cut off.
158. Solution. The magnitude of the force F can be found from
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the equation of the moments of the forces relative to the bottom of the
ladder
Ph tanot=-Ilcosoc, F:-EEX-gl-ql-
2 l coszot
159. The force required in the second case is half that required
in the first.
160. F = 1.4 kgf.
Solution. For the block to be in eqiuilibrium on the inclined surface
the force of friction f,. = kN shoul be equal to the component of
the weight directed allong the inclined surface (Fig. 235)
h
P2=·'P fr
S , _ 1/ l2—h2 .
The normal pressure N =F-{-P —-—€- . Inserting the values of N,
P2 and ff,. into the condition for equilibri-
um we get
z_. h
k(P—-—V’l ’“+F)=:-P il ~
pl
F=%(%P-%?v%:¤)
161. F=-gl-:50 kgf. /1
Solution. In order to raise the log to the P
height h each rope should be pulled up a dis- F. 235
tance 2l. On the basis of the "golden rule" lg'
of mechanics Ph. = 2 (F X 2l), where
Ph is the work done by the force of gravity and F >< 2l is the
work done by the force of tension in one rope. Therefore, F == Q? .
The problem can also be solved considering the equilibrium of
forces applied to the log.
162. F = 2.5 kgf.
Note. The force required to keep the differential winch in equilibri-
um can be determined from the principle of the moments or from the
"golden rule" of mechanics.
From the equation of the moments
fg rz —|— Fl =-· ri -1%
from which
__ P (Ti —·· T2)
F` 2l
163. III.
P
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192 ANSWERS AND SOLUTIONS

Note. The force F can be determined by the "golden 1·ule" of me-
chanics and from the condition of equilibrium of forces.
If the end B is attached a distance l from the centre of gravity of
the log, the end C should be fastened a distance 2l from it. In this case
the point of application of the resultant of the tensions F and 2F in
the ro es will coincide with the centre of gravity and the rising
log will be in a horizontal position.
165. mz = (mz — mz) sin ci; N = (mi — mz) g cos oi.
Solution. The body of mass mz is acted upon by its weight P, =
.= mig, the tensions in the threads mzg and mzg and the reaction N
of the inclined surface.
The equations of equilibrium will have the form: (m, — mz)
g cos oi == N and (mz — mz) g sin oi = mzg from which
mz = (mz — mz) sin a, N = (mz — mz) g cos ci
166. Q = 15 kgf; oi z 56°.
Solution. If the system is in equilibrium, the resultant of the
forces P and M applied at the point A should be equal in magnitude
to the force Q, i.e.,
Q= \/ P2-—M2 z 15 kgf
cosoi==%, cz»·¤,·56°
The problem can also be solved in a different manner. Considering
that the sum of the projections of forces in any direction should be
equal to zero we may write
/ I Pcosoi=M, Psinoi=Q
I ° from which Q and oi can be deter-
\ U6 mined.
\g·{ 167. Q=§— lf the point A is
shifted, the equilibrium will be dis-
turbed. The weight P will go down
B» P and Q will go up.
Q ( Note. This result can easily be
A·| I obtained from the "golden rule" of
0 A mechanics or when the sum of forces
acting on the movable pulley is con-
0 sidered.
168. Q = 3P = 9 kgf.
Fig. 236 Solution. For the system to be
in equilibrium the moments of both
forces P and Q should be the same, i.e., M, = Pl = Mz = Q é and
therefore Q : 3P.
If the rod is deflected upwards from the position of equilibrium
through a small angle oi (Fig. 236), the moments of the forces Q and P
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will no.longer be the same. After the rod is turned, the moment of the
force Q will be M2 = Q é- cos oz.
Obviously, M2 < M2.
It is easy to see that this change in the moment M2 is due only to
the change in the direction of the rod.
When the rod is turned through the angle on the direction of the
force P will, also be changed by an angle B and so the moment of the
force P after the rod turns will be M; = Pl cos (ot —|— B).
The value of M { is affected by both deflections (of the rod and the
thread) in a similar way and the reduction in M, with a given deflec-
tion of the rod will therefore always be larger than the decrease in M2.
'l`he resultant moment M2 -— M, ·;& O will cause a clockwise rotation
of the rod. The rod will tend to return to the horizontal position cor-
responding to a stable position of equilibrium.
By considering the change in the moments M, and M2 when the
rod is displaced downwards and the change in the direction of the
force P it can be shown that if the rod is displaced downwards, it will
tend to return to the position of equilibrium.
169. The centre of gravity lies in the middle of the bisector of the
angle on whose vertex is situated the ball of mass 2m.
170. The centre of gravity will be at a distance
x___ Rrz
_ 2 (R2-—r2)
from the point O.
Solution. The weight of the disk before the hole is cut out may be
represented as the resultant of two forces: the weight of the cut-out
portion and that of the remaining portion, each of which is applied
through the centre of gravity of the res- 8 0 A
sective part. This makes it possible to re- mWAW, W&__,,,,
uce the problem of finding the centre of ` gy E
gravity o the intricate figure left after the 2 P
hole is cut out to resolving parallel forces ’
and finding one of the components of the [iv
forces from the given resultant and the oth- P
er component force.
The weight P of a uniform solid disk is Fig, 237
proportional to R2 and acts through the cen-
tre of the disk O. The weight P, of the cut-out portion of the disk is
proportional to rz and acts through the centre of the hole A (Fig. 237).
The weight of the remaining portion P2 equal to the difference
P — P, acts through a certain point B at a distance x from O.
It follows from the rules for summation of parallel forces that
the distances as and ig- of the points of application of the forces P,
and P2 from the point O should satisfy the ratio
at P,
R P2
2
13-1218
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194 ANSWERS AND SOLUTIONS

Knowing that
2;:.}];.:...i.
P2 P-··P{ .R2—• T2
we obtain
2::: __ rz
R — R2-rz
or
__ Rrz
I- 2 (R2—r2)
10. Universal Gravitational Forces
4
171. yzasc X 10*10-1;;-%;;.
172. The difference in the lengths of the threads should be equal
to l as 3 m.
Solution. If the difference in the lengths of the threads is assumed
to be equal to l and one of two identical loads is right on the terrestrial
surface, the following exlpressions can be obtained for the forces of
attraction acting on the oads by the Earth:
Mm Mm
P1=‘Y Tg- » P 2 Z Y m
where M = E; pR’ is the mass of the Earth, R is the radius of the
Earth; p is the density of the Earth and m is the mass of the load.
The difference P2 —— P, will be equal to the weighing error and
will bg p,-p2 = E Ypmgs _
3 R2 (R—|—l)·‘*
Since l < R, the term lz which is small compared to 2Rl may be
neglected in the numerator of the formula obtained and R + l z R
may be assumed in the denominator.
We get
P,-pz Z % ypmzz
and therefore
I ___ 3(P1···P2)
_ 821Ypm
173. F sz: 4.1 >< 102** kgf.
Solution. Since it is necessary to determine the mean force of
attraction, assume that the Earth rotates around the Sun in a circle
of radius R. In this motion the centripetal acceleration of the Earth
provided by the universal gravitation force will be
“:i`“` 122*2
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By Newton’s second law,
4112MR
F=Ma =T
where M =%:m·3p is the mass of the Earth.
Inserting the value of M we shall obtain the following expression
for the force of attraction of the Sun:
16:rt3 r3Rp
F · T X T
174. oa z 1.3 X 1O‘3 s‘1.
Solution. The weight of the bodies on the surface of the Earth
will become zero at that angular velocity of Earth‘s rotation co for
which the centripetal acceleration cozr corresponding to this angular
velocity is equal to the acceleration of free fall of the bodies g, i.e.,
when cozr = g, where r is the radius of the Earth.
Hence,
co:]/E xs 1.3 X 10*3 1-
r s
The value of the required angular velocity can also be obtained
directly from the law of universal gravitation and Newton’s second
law.
The gravitational force exerted on a body by the Earth is F =
=-?yprm where p is the density of the Earth and m is the mass
of the body.
When the weight of a body on the surface of the Earth becomes zero
the equation of Newton’s second law for a body rotating with the Earth
with an angular velocity co will have the form
4:11 2
T yprm = mm r
and therefore
_. ,2 N -2. 1
oJ..2]/ 3 vp~1.3><10 S
(If the Earth rotates with an angular velocity smaller than the cal-
culated value, the reaction of the support numerically equal to the
weight of the body should also be introduced into the left-hand side
of the equation of Newton’s second law in addition to the universal
gravitational fgrges.)
175. M =(L‘%¤ 2 X 1027 t0I1S Wh€I‘6 (0 is the angular velocity
of the Earth in its orbit; R is the distance from the Earth to the Sun
and y is the gravitational constant.
Note. To solve the problem write the equation of Newton’s second
law for the motion of the Earth around the Sun.
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196 ANSWERS AND SOLUTIONS
176. g, — gz = $:;-5 yph rz 7 cm/sz where p is the density of the
Earth and y is the gravitational constant.
Note. The method of solution and the simpliiications used are
similar to these in Problem 172.
177. Larger in winter and smaller in summer (for the northern
hemisphere).
Solution. When it is winter in the northern hemisphere the Earth
in its motion around the Sun passes through the points in its orbit
/A\
0 o ‘/
/ 0 }
%/##·»--Q / \\ ·,·*
D % \___,
A
Fig. 238 Fig. 239
lying near the perihelion. In summer the Earth passes through the
sections of the orbit located in the aphelion. Since, by Kelpler’s laws
the radius·vector connecting the Sun with the Earth shou d describe
equal areas in equal intervals of time, the Earth should move with
5 a higher linear velocity in winter as it
,../1., traverses the section AB of the orbit than
\ in summer when it traverses the section CD
C; \ (Fig. 238). 4
A \ 178. F = -2;-I ypmr.
0 Solution. When the body is at a di-
b stance r from the centre of the Earth
which is smaller than the terrestrial radius
R, the gravitational force exerted on the
body by the Earth may be taken as the sum
$/,2 of two forces: the gravitational force pro-
5 duced by the sphere of radius r and the force
2 created by the spherical layer enclosed bet-
Fig_ 240 ween the spheres of radius R and r (Fig.
239).
Let us show that the force created by such a layer is equal to zero
for all the points lying inside the sphere of radius r.
The force of attraction exerted by the spherical layer on the body
placed at a certain point A (Fig. 240) will be the geometrical sum of
the forces of attraction produced by the separate elements of the sphe-
rical layer. Let us compare the forces of attraction produced by the
small elements S 1 and S2 cut out from the layer in the form of similar
cones with the vertex at the point A as shown in the diagram. Since
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the thickness of the layer is assumed to be everywhere the same, the
volumes and, therefore, the masses of these elements will be propor-
tional to the squares of their distances from the point A, i.e.,
in ... :5
mz __ bz
The force of attraction created by the element S 1 is
.. E";
I1-Y az
where m is the mass of the body. The force produced by the element S2
IS
_- mmg
fz — Y if
2
Since -L;-{-=%2— the ratio of these forces will be
z
.B..=E’.i.=1
fz mzaz
l.G., fi =`-• fg. • · ·
Reasoning similarly for any other two corresponding elements of
the spherical layer we see that all of them compensate in (pairs for
each other. Thus, the resultant gravitational force produce by the
spherical layer as a whole should be identically equal to zero for
any goint A lying inside a sphere of radius r.
T erefore, the force of attraction acting on the body moving inside
the Earth will be equal to the force of attraction created by a sphere
of radius equal to the distance of the body from the centre of the Earth.
The magnitude of this force can be determined in the same way as
the magnitude of the force acting on bodies on the terrestrial surface.
If the density of the Earth is denoted by p and the mass of the body
by m, then the force
m i nprs
F_ 3 _ 4:1
· Y _? ·· T W"'
i.e., when the body inside the Earth moves from the surface to the
centre it is acted upon by a force of attraction which diminishes in
proportion to its distance from the centre of the Earth.
11. Oscillations
179. At = 2.7 S.
Solution. The pendulum of an accurate clock should make N =
= 24 >< 60 >< 60E swings in twenty—four hours (T, is the period
of the pendulum).
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If after the clock has been moved the period of the pendulum be-
comes equal to T2 the clock will lose
At Z N (T2 — Ti)
in twenty—four hours.
The period of the pendulum before the clock has been moved is
I 81
where g, is the acceleration of the force of gravity in the basement.
The period of the pendulum after it is moved is
g2
where gz is the acceleration of the force of gravity in the upper
store; of the University.
T e ratio of the periods will be
I1:]/E
T 2 E1 R 2
It follows from the law of universal gravitation that %- =
1
where R is the radius of the Earth and h is the height of the Uni-
versity building.
Hence,
72:3*1 1%
and
h
T2"T1 Z-` ·§ T1
The clock will lose
Nh
At Z T T1
in twenty-four hours.
180. -§-L:%§:% (N 1 and N2 are the numbers of oscillations of
z
the pendula). 1
181. The pendulum will not swing.
182. 1·;———LL.—
1/cosot
Solution. When the cart rolls down, the pendulum simultaneously
performs two motions: translational accelerated motion with the cart
relative to the Earth and oscillatory mot1o11 with respect to the cart.
The translational acceleration of the pendulum is caused by the com-
ponent of the we1ght mg sin oc (Fig. 241) acting along the inclined
surface. _
With the conditions specified in the problem this component of
the force of grav1ty cannot change the position of the pendulum with
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respect to the cart (see Problem 181) and cannot therefore affect the
change in the period of the pendulum. The oscillations of the pendulum
with respect to the cart will be
brought about by the action
of the component of the weight
mg cos cc perpendicular to the
ilntilined suiface, he., the pen-
u um wi osci ate as if it {na ,
were acted upon by the force mg`; , ; Q
of gravity mg cos cz and not mg. \ I.
The acceleration of free fall m mgoosa
that would correspond to this 4
value of the force of gravity P=mg
must be g' = g cos oc. Fig_ 241
Correspondingly, the period
of the pendulum on a cart moving with an acceleration should be

rzzal/Lzzn V ....€..:.&..
8 8 COS °'· `\/ cos on
where T0 is the period of the pendulum on a stationary cart.
Thus, the period of the pendulum increases when the cart rolls
down the inclined surface.
183. Solution. When an oscillating body (e.g. a pendulum,
a weight on a spring, a sand grain on an oscillating membrane) passes
through the position corresponding to its maximum deflection from
the position of equilibrium, it has the maximum acceleration at that
moment. When the body approaches the position of equilibrium the
acceleration gradually decreases and becomes zero as it passes through
the position of equilibrium since the forces returning the body to the
position of equilibrium also become zero at this moment.
Since the time needed for the body to pass from the position of
equilibrium to the position of maximum deflection for the given period
of oscillation remains invariable at all amplitudes and the velocity
with which the body passes through the position of equilibrium increa-
ses as the amplitude increases, the accelerations of the body in the
extreme positions and the specified period of oscillation should also
increase as the amplitude increases. (Velocities of different magnitudes
should become zero at the same time.)
Therefore, the sand grains present at those points of the membrane
where the amplitude of oscillation is small wil have smaller accelera-
tions than the grains at the points with a greater amplitude of oscilla-
tion. At any moment the grains are accelerated by the joint action of
the weight mg and the pressure of the membrane f.
When during oscillations the grain passes with the membrane
through the uppermost position, the acce eration of the grain a has
its maximum value and is then directed downwards. _
The equation of Newton’s second law at this moment will take
the form: mg - f = ma.
When the amplitude is high enough, the acceleration a may become
numerically equal to the acceleration of the force of grav1tY ¤¤d at
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200 ANSWERS AND SOLUTIONS
this amplitude the force f exerted by the grain on the membrane will
become zero. As the amhplitude continues tp grow, the force 0; gravity
will no longer be enoug to im art an acce eration a > g to t e grain.
The grain will fail to follow tlle motion of the membrane, will be de-
tached from it and move to the points on the membrane with small
amplitudes of oscillations where a <•g. I _
Since the magnitude of the amplitude at which the grams are
detached is related only to the magnitude of the acceleration of the
force of gravity, the masses of the grains will not affect their behaviour.
When oscillations are performed with an invariable amplitude but
with a different frequency, the body should cover the same path in
a different time.
If the frequency is increased, the velocity with which the body
passgs ghrough the positiqln of equilibikium xiriil grow, th; time for
the o y to move from te osition o equii rium to t e extreme
position will diminish and tllerefore the accelerations of the body
oscillating witili af constant amplitude should increase in the extreme
positions as t e requency of oscillation increases.
In the case of high-frequency oscillations the grains will begin
to be detached at lower amplitudes than during oscillations of small
requency.
184. Solution. The hydrometer immersed in a liquid is acted
upon by two forces: the weight mg and the buoyancy (Archimedes
force) j, the magnitude of which depends on the volume of the immersed
portion of the hydrometer. When the hydrometer is in equilibrium
these two forces are equal.
Suppose the hydrometer is immersed in a liquid h cm deeper than
the position of equilibrium, then the buoyancy is Shp larger than
the weight and tends to return the hydrometer to the position of
equilibrium. This force will im-
lqdqz * `Z+‘Z`°"l art an acceleration —phS t ‘th
' i n P a —_rrT 0 6
I ‘ hydrometer. The hydrometer will
7 b begin to oscillate with an amplitude
h.
It has been shown in the solu-
A; tion of Problem 183 that for the gi-
M /7 ven amplitude of oscillation larger
frequencies of oscillations corres-
pond to larger accelerations when
tlhe oscillating body is deflected to
- t e maximum.
F]g' 242 When the mass of thel hydro-
meter is increased its acce eratio
will diminish as will the frequency of oscillations. The frequency
also diminish when the diameter of the tube is reduced and will in-
crease when the density of the liquid is increased.
185. The board will perform oscillatory motions.
Solution. Each roller will exert on the board forces of friction equal
to fi = kN 1 and fz 7 kN2 where N1 and N 2 are the pressures of the
board on the respective rollers.
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The forces ji and fz are directed as shown in Fig. 242.
If initially the centre of gravity of the board is displaced a certain
distance or from the middle line, the pressures N 1 and N2 and therefore
the forces j, and fz will not be equal to each other. Since the board
can not move in a vertical direction,
l—|-:1:
Ni-—·2TP
l-:1:
i.e., N1 > N2 and therefore fi > f2.
The resultant of the forces ji and fz will be i= kP if- directed
towards the position of equilibrium.
The board will tend to go back to the position of equilibrium.
Thus, the forces of friction will cause the board to oscillate.
12. Hydro- and Aerostalics
186. h 4:,410.34 m.
Note. The water will rise with the piston until the pressure pro-
duced by the weight of the water column becomes equal to the atmos-
pheric pressure.
187. P0 = 21.5 kgf/cmg.
188. F = 1.5 kgf.
189. P = 1.04 kgf/cm2.
190. d = %— do == 0.83 g/cm3 (do is the density of water).
z
191. h = r.
Solution. The pressure exerted on the separate elements of the side
of the vessel (as measured by the height of the liquid column) changes
from 0 to h in proportion to the distance of these elements from the
free surface of the liquid. For this reason the total force of pressure
on the side surface can be calculated from the mean pressure equal
to Q- The force of pressure on the side surface will be proportional
to 2nrh g- , the force of pressure on the bottom will be proportional
to nrzh. The required result can be obtained by equating these forces.
192. lt will not. _
Solution. The pressure in the tube at the level of the tap A will
be below atmospheric pressure. Therefore, the atmospheric pressure
will not allow the water to flow out when the tap is opened. A1r will
enter the tube through the tap until the atmosplheric pressure is reached
inside the tube and until the water sinks to t e initial level.
193. 148.5 cm Hg.
194. h m 85 cm.
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Solution. The water in the tube will rise until the pressure of the
water column that is being formed equalizes the pressure produced by
the iston.
The pressure exerted by the piston is
~ gf/CII} I)
The height of water column can be found from the equality
dgh = P
195. P = 4 cm Hg.
Solution. The heights of the layers of water and mercury hi and hg
can be found from the ratios
hi + hz = ho
and
h1'Y1 = h2Y2
where yi and Y2 are the specific gravities of water and mercury.
The pressure in centimetres of mercury column can be found from
the ratio
P = I-’§—’L+ hz Z uz
196. h w 3.7 cm. 2
Solution. When the water is poured in, the mercury level will
sink a distance h in the first vessel and rise by the same amount in the
second vessel.
The lpressure of the mercury column of height 2h thus formed will
be equa ized by the pressure built up by the column of water and the
blody floating in it, i.e., in the case of equilibrium, the following will
old
__ P+p
where d is the density of mercury and P is the weight of water.
_ P+p
197. hi = hg % : 18 cm.
1
198. hg = 0.3 cm; h, = 4.8 cm.
Solution. If the displacement of the mercury levels in the right-
and left—hand vessels is denoted by h, and hg (h, —|- hg = x) and the
pressure IS measured in centimetres, the condition of equilibrium of
the liquid will take the form
h d
n, 4. hz 3- .952
where do is _the density of wate1· and d is the density of mercury.
As liquid is incompressible
Sihi = Szhz
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where S, and Sz are the cross-sectional areas of the vessels related, from
the given conditions, by the ratio Sz = 16S,. The first equality deter-
mines the condition of equilibrium of the liquids in the tube and the
second expresses the constancy of the volumes of mercury transferred
from the eft—hand limb to the right-hand one.
From these equations:
_ hodo _ 16h0d0
WW and h*" mz
199. hz z 0.6 cm.
Solution. When water is poured in, the level of mercury in the
narrow limb will sink to a height h, and in the broad one it will rise
to a height hz = E3! The height of the water column will be l -|- h,
and the height of the mercury column equalizing the weight of the
water column will be h, —|— hz. Equilibrium will be established when
the following ratio is observed
do (Z + hi) = d (hi ·l· hz)
where d is the density of mercury and do is the density of water.
Hence,
ldo
h2"2H- 3,1,,
200. The difference in the heights of mercury levels is h, = 0.5 cm.
Solution. Since we are given that both limbs have the same height
the equal columns of kerosene above the water level may be ignored.
The mercury level in the limb containing water will obviously be
below the mercury level in the other limb (since the specific gravity
of kerosene Ez is smaller than that of water yo).
If the di erence in the mercury levels in the two limbs is denoted
by h, the condition of equilibrium of the liquids in the tube may be
written as
h0'Yo = h1'Y1 + (ho — hi) Y2
Hence,
YO'—Y2
h = —-— h
1 Y1‘"'Y2 0
201. 50 gf.
202. V rs, 75 dm3.
203. d .¤ 1.5 g/cm3.
g()1,_ V1:}/.P.E’.; Vzzy ILIE.
Y2—‘Y1 Yz‘fY1 _
Solution. Let us denote the fract1on of the volume of the ball
in the upper liquid by V, and the fraction in the lower one by Vz.
Then, V = V, —{— Vz. _
Each of these parts of the ball is acted ugon by the force of gravity
V,·y and Vzy and the buoyance (Archime es force) V,·y, and V2?.
Since the ball is in equilibrium on the boundary of the liquids, t e
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sum of all these forces is equal to zero, i.e.,
(V1 + V2) Y = V1Y1 + V2)’z
Hence,
V'? = VIYI + (V —— V1) Y2
or
v,:V.Y2;.Y.
'Y2·'Y1
Similarly,
V2:-.V.JL.X!..
'Y2‘_Y1
These formulas can be verified by the method of passage to the
limit.
(1) Suppose that the specific gravity of the ball is equal to that
of the; uplper liquid, i.e., Y = Y,. Introducing Y = Y, into the expres-
sion or 2 we ge
'Y2·Y1
i.e., the ball is in the upper liquid.
The same result will be obtained if Y = Y, is inserted in the expres-
sion for V2
VZZZV Y1_Y1 :0
Y2”Y1
(2) Suppose that the specific gravity of the ball is equal to that
of the lower liquid, i.e., Y = Y2. We get: V, = 0 and V2 = V, i.e.,
the ball floats in the lower liquid
205. Y;-.Y.%3@..=7.25 gf/cm3.
Note. Since V,=V2 (see the solution to Problem 204), then
V Y2"°Y ZV Y`_°Yi
Y2_Y1 Y2"'Yi
or v2——v=v—vi. from which 2v=v2+v1 or v=2?-ig-Y-L
206. 0.19 of the volume.
Solution. It follows from the given condition that the weight of
the body IS = 0.25 VY where V is the volume of the body and Y the
specific gravity of mercury. If x is the volume of the body left in the
mercury after the water is poured in, the condition of equilibrium
of the body may be written in the form :cY + (V —-— x) Y0 = 0.25 VY
where Y0 IS the specific gravity of water. Therefore,
2; : V-_:9_4gv
Y···Y0
207. d w 2.5 g/cm’.
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208. d = 1.5 g/cm3.
209. The pan with the piece of silver on it will move down.
210. V = 13 cms.
211. V z 59 cms.
212. P z 10.9 gf.
Note. If P is the weight of the mercury the following equality
should hold
P P,—-P __ P,-——P2
Y1 + V2 _ Y0
where yo is the specific gravity of water equal to unity.
213. d = 1.8 g/cms.
214. AU, = Vgh (d — do); AU2 = 0.
Solution. The body moving in water is simultaneously subjected
to the force of gravity and hydrostatic forces. The work done by the
hydrostatic forces, as well as the work done by the forces of gravity,
does not depend on the path. We may therefore introduce the concept
of the potential energy of a body acted upon by hydrostatic forces.
When the body is raised to a height h its potential energy will
be increased by Vdgh by the action of the forces of gravity and decreas-
ed by -—— Vdggh by the action of the hydrostatic forces. The total change
in the potential energy of the body will,be
If d > do, then AU, > 0 and the energy of the body increases.
If d < do, then AU, < 0 and the energy of the body diminishes.
When the body moves up to the height h a volume of water V is
displaced downwards by the same distance. In this case the potential
energy of this volume in the field of the forces of gravity will diminish
by Vdogh and the energy due to the hydrostatic forces will increase
by Vdogh. Therefore, the total potential energy of the water will
remain constant:
AU2 Z 0
P1
215. P=P,-\—v0 (V-——) :440.6 gf.
Y1. . . .
216. When the set of weights IS made of material having the same
density as the body being weighed.
217. v, = 1.94 gf/l; V = 1]; P0 = 125 gf. _
Solution. The following ratios can be obtained for the specific
gravities of air vo, carbon dioxide Y, and water Y2
P —P P -P P ——P
Yo=‘L,%)·» vl==·J—,r£. v2=-—"¥T,—£-
Hence, the formulas for the weight and volume of the vessel and for
the specific gravity of carbon dioxide are
P0:P1Yz—·I’s\’o, V: P3--P, 1 m=(pz-—P,) vz+(Ps~·P2Wo
v2"'Y0 Y2—'\’o P3""Pi
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218. 79 kgf; 0.5 g/l.
219. The ratio between the volumes of water and alcohol should
be 8 : 13.
Note. The density of the mixture can be found from the relation-
ship
V1d1+Vzdz
d i•*'"" -·•· 1
° K <Vi+v.> ‘ ’
where Vi and V2 are the volumes of water and alcohol; d, and dz are
their respective densities and K = 0.97 is the coefficient of reduction
in the volume of the mixture.
The numerator and denominator in relationship (1) determine the
mass and the volume of the mixture, respectively.
Hence the ratio of the volumes of water and alcohol is
_ll_ Kd0—d2
V2 __- d1·—Kd0
d 220. 77.4 parts by volume of air are needed for 100 parts of carbon
ioxide.
Solution. The specific gravity of the mixture should be such that
the weight of five litres of it is equal to the weight of the ball and the
air. The weight of the ball and the air is WV -{- P.
If W is the volume of the air in the mixture, the weight of the mix-
ture will be yiW + Y2 (V — W).
h The condition of equilibrium
of the ball may be written as
_-{nm but “- Y1V+P=Y1W+Y2(V—W)
gha j E Hence, P
· - ' wzv ——- S 2.181
+ Yi-FY2
and 8
Fig- 243 .2;.-2;. .. .
V___W -- 2.82 N 77.4. 100
221. The water level will perform periodic oscillatory motions
(Fig. 243).
Solution. At first the level of water will gradually rise to the
hg.
After reaching the height hg some of the water will be drained
through the _s1phon. As soon as the entire cross section of the to of
the siphon pipe is filled with water, the water level will begin to drop
since from the given conditions the velocity of the water flowing from
pipe IS h1gher than from pipe A. The evel will continue to sink
until it reaches the height hi coinciding with the edge of pipe B. After
this the process will be repeated.
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13. Thermal Expansion of Bodies
222. The clock will lose 1: = 8 s.
Solution. A definite number N of oscillations of the pendulum
will correspond to one full revolution of the hour-band. If the clock
is accurate, these N °oscillations are performed in twenty-four hours.
From the given conditions
N Z 24 X 60 @0
2:1: I/Bl.
8
When the temperature changes by t degrees the length of the pendu-
lum will be l = lo (1 —{— at) and the period of oscillations of the pendu-
lum will change by
T-—-T0=2J1: (/L—lf&)=
8 8
_-gl l--Z0 ~ TE I-lo _i[- Glo!
8 I/7 I/Z»`~g I/75 g I/K
8* + 8 L' E
The clock will gain or lose
t=N(T——-T0): iE-—O-@;.—=12X60 ><60otts
231; lg g
8 8
in twenty-four hours.
223. F = SEott = 3,465 kgf.
Solution. Ii the rod were free, heating it by t° would expand it by
a length
I •— Z0 7: alot
Since, from the given conditions the distance between the steel
plates remains constant, the value l —- lg will determine the compres-
sive deformation of the rod caused by the heating.
According to Hooke’s law, the force of pressure of the rod will be
Fr;-§'iE; (l-- lo) ==SEott
0
224. x = looct z 0.02 mm. _
Solution. At 20°C the length of the 180 divisions of the vernier
caliper is 180 mm. At 10°C the length of the 180 divisions will be
I = [20 (1 + an
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208 ANSWERS AND SOLUTIONS
(t is the temperature difference), i.e., the length of the rod measured
at 10°C will be x = Izod! sma ler than its actual length.
225. The increase in the diameter caused by heating of the work-
piece is equal to cole (t —— to) = 38.5 microns, i.e., it will exceed the
permissible errors. Corrections should be introduced.
226. Iron cylinder 28.3 cm and copper cylinder 18.3 cm.
Soluzion.li\(i) any temperature the lengths of the iron and copper
cylinders wi e
li = 101 (1 + mf). lz = itz (1 + ¤¤z¢) (1)
From the given conditions
li ·— lz Z and lol -— lgz T-
It follows from (1) and (2) that
loz 011
lOl G2 ( )
The initial lengths of the cylinders should be inversely proportional
to the coefficients of linear expansion.
It follows from (3) and (2) that
01— u2__di 7 02—` Gzlai
227. l0=li =757.3 mm Hg.
Solution. Since, from the given conditions, the scale has been
checked at 0°C, then Z, = 760 graduations on the scale will correspond
to the length of the mercury column
lz = Z, (1 —}- oat)
The column of mercury of height lg will Set up a pressure P : viz,
where y is the specific gravity of mercury at a temperature t = 18°C.
At 0°C the same Eressure will be built up by the mercury column of
Z0, such t at P Z Yolo.
Since v = mT%the actual pressure expressed in millimetres of
the mercury column will at 0°C be equal to
1+ozt
z Zlz :1 --
° vo “ ‘ 4+¤¢
228. V —- V0 :1.14 cm3.
Note. The change in the total volume of a body being heated does
not depend on the presence of spaces inside the body and can be cal-
culated from the usual formula for volume expansion
V : V0 (1 + Bt)
Where [3 is the coefficient of volume expansion.
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The volumes occupied by the vessel and the sphere will be the
same at all temperatures. The change in volume on heating will be
V * V0 Z
229. V1 =% V0 =-g V0.
z
Note. See the solution to Prob_lem 226.
230. P = YVO (B2 — B1) z 0.1 gf. 1 _
Solution. The volume of the vessel at 0°C 18
700 3
V0-.13.6 ...51.5 cm
The volume of the vessel after heating by1° is V1 = Vo (1 + 1).
The volume of the mercury after heating is V2 = V0 (1 -|— gz).
The volume and the weight of the mercury that flows out during
heating will be
V2 — V1 = Vo (B2 ·· B1)
and
P = 'YV0 (B2 — B1)
231. Solution. To answer these questions, consider the aerostatic
pressure produced by the columns of air at points A and B in the
mine (Fig. 244).
The total pressure at these points has D p ,1
three components: (a) the pressure of the- i'T"”‘*" “‘
air column lying above the level DD, and { { ` l`
the same for the points A and B; (b) the C1 ¤ Q `··
pressure of columns CA and C,B. These pres- __ Q
sures will also be the same since the tem- ‘ ; A ,
peratures and therefore the densities of air · . i 1
are identical in these columns; (c) the pres- , · Q _ {
sures built up by columns CD and C,Di. w = ·
Assume that the temperature of the air Q {M / / `
in the mine which is given as constant is ' ' '
below the temperature outside in srunmer A. J ,, .· . V B'
and above that temperature in winter. .
If this is the case, the temperature of the Fig- 244
air in summer in column CD will be higher
and its density lower than in column C,D,. For this reason the
ressure built up by column C,D, in summer will be higher than
tilne pressure created by column CD. A certain pressure difference
will exist between lpoints A and B which will disturb the equilib-
rium of the air in t e mine and will cause it to flow from point B to
point A. In summer the air will enter the mouth of the mine lying
at a higher level and flow out from the mouth at a lower level.
In winter the density of air in column CD and the pressure built
up by this column will be larger than the density of air and the pres-
sure created by column C ,D, and the air will therefore move in the re-
verse direction from point A to point B.
14-1218
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232. Solution. In winter the air will enter the bottom gallery
and flow out of the upper one. In summer the air will move in the
reverse direction.
The direction of the air motion will be determined by the ratio
of the ressures set up in the bottom gallery by the air columns AD
and BCP (Fig. 2453. _ _
In winter the ensity of air in column AD and the pressure created
by it will be higher than the density of air and the Eressure in column
CB. For this reason t e air will move
D I! _ / 0 from point A to point B.
[III { o R . _
{ , I . , 14. Quantity of Heat. Heat
{ { _ Exchange
{_{_. i , , - _ 233. 0°c. C Vd
I- /9 / l —` 234• M=E...L.Q.TEz54g_
:.',_:*". `· ` ··- I' B q Bm
A Solution. At the moment the piece
. of iron is placed in the calorimeter the
Fig. 245 m
density of the iron d = 7 is related to
d
its density at 0°C by the ratio d =-m_%—.
The known values d and do can be used} to determine the tempera-
ture of the iron:
tl-. do-—d _ Vd0—·m
— Bd " Bm
where B is the coefficient of volume explansion of iron and m and V
are the mass and volume of the iron at t e moment it 1S placed in the
calorimeter. _ _
The amount of ice that melts can be found from the equat1on of
thermal equilibrium:
MZEE.
9
where q is the latent heat of fusion of ice.
235. q= gi- 100:533 cal.
236. ~87 ger cent of the original mass _of water.
Solution. T e heat necessary for evaporation can be obtained only
from the latent heat of fusion liberated when the water freezes. Upon
freezing of mi grams of water, m1q, calories of heat will be liberated
(qi is t e latent heat of fusion of ice) wh1ch will form the amount of
Vapour mz = Ti]-! Where q2 is the heat 0f evaporation at 0°C. If rn =
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= mi —l— mz is the mass of the water before pumping, the mass of
the ice produced will be

mi 91+92 m
or ~87 per cent of the original mass of water.
15. The Gas Laws
V .
237. -17:-;,%; see Fig. 246.
P . .
238. -77 -H, see F1g. 247.
239. See Fig. 248.
Solution. At any temperature a given mass of gas will create
a pressure which will increase, as the volume of the vessel containing
the gas decreases. When the gas is heated in the small vessel the pres-
y P V:<Vz
/ /// // z V2
0 T 0 ’ r
Fig. 246 Fig. 247 Fig. 248
sure will increase faster than during heating in the large vessel. The
constant-volume line corresponding to the small volume will always
form a larger angle with the X—axis on the plot (P, T) than the con-
V /2 a<e P
/ 7’>T
/1/ Q ' 2
1 , L
[ // Q
/)/ T 72
0
0 · II
Fig. 249 Fig. 250
stant-volume line that corresponds to the larger volume (Fig. 248).
240. See Fig. 249.
Solution. At a given temperature and a high pressure the gas will
occupy a smaller volume than at a small pressure although at the
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same temperature. The higher the Eressure at which the constant-
pressure process occurs, the smaller t e angle formed by the constant-
pressure ine with the X-axis on the plot (V, T) (Fig. 249).
241. See Fig. 250.
The constant-temperature lines corresponding to the lower tempe-
gatures arrange themselves on the PV plot closer to the origin of coor-
inates.
242. See Figs 251, 252, 253.
243. See Figs 254, 255, 256.
244. See Figs 257, 258, 259.
245. To determine the temperature of the gas at the initial point 1,
at the final point 2 and at a certain point 3, draw constant-tempera-
ture lines (Fig. 260) through these points and determine the ratio of
the temperatures at these points from the relative position of the
constant-temperature lines. The gas is heated in the section 1-3 and
cooled in the section 1-2.
246. The gas expands during heating.
Solution. In order to determine the nature of change in the gas
volume during heating, draw constant-volume lines on the drawing
/ /
P I, al, V //
[ fx //
W2 / g ///’
/ // // //
/ / / / {
/// 4/
Fig. 261 Fig. 262
assing through the initial and final points 1 and 2 (Fig. 261). Point 2
lies on the constant-volume line which is more sloping with respect
to the X-axis than the constant-volume line passing through point
1 and therefore (see the solution to Problem P
239) the gas occupies a larger volume at point 2m
2 than at point 1. Heating was conducted
for an increasing volume of gas. _ _
247. The pressure constantly dimm-
ishes. / m
Solution. In order to solve the prob- ,,’¤’ cx T
lem, draw lines of constant pressure _on 0 ‘
which points 1 and 2 lie (Fig, 262). Point F, 263
1 lies on the constant-lpressure line which 18-
forms a smaller ang e with the X-axis _
than the constant—p1‘essure line passing i>h1‘Q\1gl1 p01nt 2 and _th°I°°f°1°°
(see the solution to Problem 240) 1;he_ gas is present at pomt at
a larger pressure than at point 2. Heating was conducted wnth a 1m1-
nishing pressure of the gas.
248. See Fig. 263.
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at the final point 2 and at a certain point 3, draw constant-tempera-
ture lines (Fig. 260) through these points and determine the ratio of
the temperatures at these points from the relative position of the
constant-temperature lines. The gas is heated in the section 1-3 and
cooled in the section 1-2.
246. The gas expands during heating.
Solution. In order to determine the nature of change in the gas
volume during heating, draw constant-volume lines on the drawing
/ /
P I, al, V //
[ fx //
W2 / g ///’
/ // // //
/ / / / {
/// 4/
Fig. 261 Fig. 262
assing through the initial and final points 1 and 2 (Fig. 261). Point 2
lies on the constant-volume line which is more sloping with respect
to the X-axis than the constant-volume line passing through point
1 and therefore (see the solution to Problem P
239) the gas occupies a larger volume at point 2m
2 than at point 1. Heating was conducted
for an increasing volume of gas. _ _
247. The pressure constantly dimm-
ishes. / m
Solution. In order to solve the prob- ,,’¤’ cx T
lem, draw lines of constant pressure _on 0 ‘
which points 1 and 2 lie (Fig, 262). Point F, 263
1 lies on the constant-lpressure line which 18-
forms a smaller ang e with the X-axis _
than the constant—p1‘essure line passing i>h1‘Q\1gl1 p01nt 2 and _th°I°°f°1°°
(see the solution to Problem 240) 1;he_ gas is present at pomt   at
a larger pressure than at point 2. Heating was conducted wnth a 1m1-
nishing pressure of the gas.
248. See Fig. 263.
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Solution. At any given temperature, 2m grams of gas will produce
twice as great a pressure than m grams enclosed within the same
volume.
The constant-volume line for 2m. grams of gas will be at a larger
angle with respect to the X-axis than the constant-volume line for rn
grams, and
tan B = 2 tan ot
249. 2/3 of the cylinder volume.
Solution. If P2, V, and T2 are the pressure, volume and tempera-
ture of m grams of gas and P2, V2 and T2 are the pressure, volume and
temperature of 2m grams of gas the following ratio will always hold:
V P2V2 :2 P 1Vl
I"' T 2 T1
/ 2 (seeFthe sollution to Prolélem 248)i1 h
rom t e given con itions,w en t e
/ / lu piston is in equilibrium, T2 = T2 and
¢£»’ P, = P2. Therefore, the piston should
0 7 take such a position when
Fig. 264 V2 =·— 2Vi
250. The plots will be different
(Fig. 264).
Solution. With the same masses, the gas with a molecular weight
2p. will contain half as many molecules as the gas with a molecular
weight . lf the temperatures of the gases are the same, the mean
stores oll energy in the molecules of both gases will also be the same.
For *the gases in these conditions to cre-
ate the same pressure the number of im- V ,
pacts of the molecules er each cm2 of the / /
surface of the vessels should be the same I! Z//’
too. This is only possible when the hea- // 2
vier gas occupies a smaller volume. 1%
Hence, if the pressures and temperatures » //
are the same, rn grams of the heavy gas X /
always occuply a smaller volume than m ,;/
grams of t e light gas. The constant- 0 7*
pressure line of the heavy gas on the
plot (V, T) will always be more sloping _
than that of the light gas. Flg· 265
251 . The amount of gas has decreased.
Solution. In order to solve the problem, draw lines of constant
pressure corresponding to the constant masses of the gas through points
1 and 2 (Fig. 265). The constant-pressure line on which point 1 lies
is steeper than the line on which point 2 lies. Therefore (see the solu-
tion tg Problem 248) the mass of the gas in state 1 is larger than in
s ate .
252. See Figs 266 and 267.
253. Two answers are possible: 1/610 or 1/360.
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CHAPTER II. HEAT AND MOLECULAR PHYSICS 215
Solution. The coefficient of gas expansion or. shows that the volume
of gas is increased bl); 1° during heating with respect to the volume it
occupied at 0°C on t e temperature scale. _ _
But 0°C on Delil’s scale corresponds to_the boiling point of water.
For this reason, utilizing the usual definition of the coefficient of gas
expansion all the changes in volume should be referred to the volume
occupied by the gas at the boiling point of water.
d
p:-'Const d
d·T=const 1 pcmsg
%=oonst
0 T g F
Fig. 266 Fig. 267
. . 2 . 1
Since 1 deg by Del1l = T by centigrade scale and ocV0 = 2775 Vo =
:5% V,00 = ot,V,00, the coefficient of gas expansion on Delil’s
cale will be
3 * 360
and the equation of Gay-Lussac’s law may be written as
V = vg, (1 4- OLD:) (1)
where V5 is the volume occupied by the gas at 0° on Delil’s scale and ¢
is the temperature in Delil’s degrees.
If the change in the volume of gas is referred, as before, to the
volume occupied by the gas at the melting point of ice (i.e., as it is
commonly done when measuring temperature on the centigrade scale)
it will be necessar to:
(ag determine the coefficient of gas expansion as the number show-
ing t e increase in the volume of the gas when it is heated by 1° on
Delil’s scale with respect to the volume occupied by the gas at the
tem erature —150° Delil;
gb) assume the coefficient ab as equal to
· - 2 -2. L N 1
°°D‘ 3 °" 3 273" 410
In this case the equation of Gay-Lussac’s law will take the form
V = V-150 ll "l‘ ab (t + 150)] (2)
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2,6 ANSWERS AND SOLUTIONS

It is easy to see that equations (1) and (2) always produce the same
results when the volume of gas is calculated.
254. 21°C.
Solution. It follows directly from Gay-Lussac’s law that
V 110
T2=—I£— T, =-E >< 278 z 295° abs
where V, and V2 are the volumes occupied by the gas in the device
before and aftervheating.
255. P- Vi_V2 -75 cm Hg.
256. P = 71 cm Hg.
257. 20.5 cm.
258. hg = 15.8 cm.
Note. In this case Boyle’s law equation will be
liP=hz(P+hz·—Z)
where l is the total length of the part of the tube projecting from the
mercury.
259. 0.96 of the initial volume.
Note. After submergence the air in the glass will be under a pres-
sure of P -|— QS- .
260. y = 600 mm Hg; .1: = 15 cm.
Solution. The flow of mercury through the siphon will continue
as long as the pressure built up by the mercury at point C inside the
tube (Fig. 268) exceeds the atmo-
spheric pressure.
Assume that the mercury level
in the vessel has dro ped by so cm
and the pressure of the air in the
vessel becomes y cm Hg.
_ j The same pressure y will obvi-
TA _*~z_ _ __A· ously be established also in the
,_, { lg tube at the level AA ’ corresponding
{l g, to the free surface of the mercury
- ...... -L-.. in the vessel.
0 The pressure P, produced by the
Fig. 268 mercury at point C at the exit
;rom the tube will be formed from
the pressure y and the pressure
of the mercury column A’C = l -— :1:, i.e., it will be equal to P, =
= y ii- l — x where l is the initial height of the mercury level in the
vesse .
As the mercury level drops in the vessel, the pressure y and also
P, will diminish. and at the moment the flow of mercury ceases P,
w_1ll be equal to P0, where Pg is the atmospheric pressure. Hence, the
&11‘ pressure IH the vessel at this moment will be
y=P,,—(l-:1:) cm Hg
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We are given that a plressure of Po and a volume of air proportional
to l were recorded in t e vessel at the initial moment. Tho vglumg
of air at the moment the flow of mercury ceases will be proportional
to Z -{·— x.
It follows from Boyle’s law that
PoZ = y (Z ·l- =¤)
or
Pol = {Po — (Z- =·=)l (Z + ¤=)
Introducing the values given and solving the equation for x we can
find the drop in the mercury level and the pressure in the vessel at
the moment the flow of mercury ceases.
261. as av 4.5 cm.
Solution. Denoting the displacement of the mercury column by x,
the length of the tube occupied by the gas in each of its halves when
the tube is in a horizontal position by lg and the pressures of the gas
in the uptper and lower halves of the tube after it is placed vertically
by P, an P2, we can write the equations of the change in the state
of gases in each half as follows:
Zopo = (Z0 "l" J?) P1
Zopo = (Z0 " xl P2
P 2 = P1 + ho
The solutiqn of these equations will give us the required result.
··T 0 . _. Z _
262. CH], atm.
Solution. Knowing that the masses of the gas are equal and taking
into account that after the piston is displaced by an amount x the
pressures will be the same in both parts of the cylinder, we may apply
Gay—Lussac’s law and obtain the ratio
l—:z: __ 1-}-:1:
from which
T -To
1..* l *7
x T +T 0
263. Up to 663°C.
Note. When solving the problem bear in mind that the pressure in
the tube will be (75 — 5) cm Hg before heating and (75 —|- 5) cm Hg
after heating.
264. R z 1.9 cal/deg = 8.3 >< 107 erg/deg.
Solution. One gram·molecule of any gas at To = 273° abs_ and
a pressure of Po = 1 atm occupies a volume of Vo = 22.4 litres.
Therefore,
PoVo 22.4
;--i—•:——-—— . •
R To 273 l atm/deg l atm/deg
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218 ANSWERS AND SOLUTIONS
The answer can be obtained by simply changing the dimensions for
the different systems of units.
265. Less work is required to immerse the vessel with an opening.
Solution. During the whole time the vessels are submerged the
one without an opening will be acted upon by a constant force F, =
= dV, where d is the specific gravity of the water and V is the volume
of the vessel. As the other vessel is immersed the water will flow into
it and compress the air it contains. Accordingly, the volume of the
water displaced by this vessel and the buoyancy F2 will diminish.
Therefore, the work done against this force will at any moment be less
than the work against the force F,.
266. Q = 1,904 cal.
Solution. The hnal temperature of the gas is determined from
Gay-Lussac’s law
V0 _L’_
and the quantity of heat from the equation
Q = Cpu (T -— T 0)
where p is the molecular weight of oxygen.
267. A =P(V— V0)=R.
Solution. The pressure acting on the gas is P = % . If heating
the gas by 1° raises the piston to a height h the work done by the gas
will be
A = Gh = PSh
But Sh is equal to the increment in the gas volume (V - V0) caused
by the rising piston. Hence,
The equation of state of an ideal gas gives us the following equa-
tions:
PV0 = RTO and PV = R (T0 -|- 1)
whence A = PV — PVD = R.
268. Q = 71 cal.
Solution. The heat taken from the heater will be expended on
increasing the temperature of the gas and doing work to raise the
piston.
The heating will increase the volume of the gas to
V: L vo = 11.651
T 0
The work done by the gas in this expansion (see the previous prob-
lem) will be
A = P (V -— Vp) = 20 X 0.45 lili1‘9·&tm = 9 kgf-m at 21 cal
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The quantity of heat used to heat the gas will be
Q=Cy(T—T0)—|-A =71 cal
269. The heat supplied to the gas is expended on doing external
work when the gas expands.
270. During exliansion at constant pressure.
Note. For all vo umes from V0 to V1 the gas pressure in the con-
stant-pressure process will be larger than in the constant-temperature
one (Fig. 269). Accordingly, the work done by the gas will also be
larger in the constant-temperature process (see the solution to Pro-
em 267).
271. The temperature of the gas will P
decrease because some of the internal
energy of the gas is converted into the
mechanical work during expansion. Il I I
I I
| I
16. Surface Tension E '
I
272. The surface tensions of the al- 0 lp y V
cohols will be related to oz. of water as 1
7.2:13 and 13.2:13; r 4:, 0.2 mm. Fi 269
273. Solution. From the moment the g'
(filling begins to the moment of time A
Fig. 270) the water level will uniformly rise in the capillary tube
(curve I) and remain at the same level in the broad tube (curve II).
I
I
.... I I I
I I
ah 1w 0 M ,
o I
{ E Y E A B C DE_h0
0 A B C D t I
Fig. 270 Fig. 271
The difference in the levels will constantly increase (Fig. 271).
At the moment of time A the difference in the levels will reach
2oc
From this moment up to the moment of time B the levels in the
ca illary and broad tube will rise with the same velocities wh1le the
digerence in the levels will remain constant and equal to ho. _
At the moment of time B the water level in the caplillary tube w1ll
reach the end of the capillar and will stop at a heig t hi (F1g. 270).
From the moment B to tile moment D the water level will conti-
nuously rise in the broad tube. The water level in the capillary will
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remain constant but the meniscus will change its shape from concave
of radius r (at the moment B) to a flat one (at the moment C) and then
to a convex one of radius r (at the moment D). The difference in the
levels in the section BC will decrease to zero and in the section CD
it will change its sign and will increase to ho.
At the moment D the water will begin to flow out of the capillary
tube and from this moment onwards all the levels will be constant.
The maximum height to which the water rises in the broad tube
is h, .-|- ho. The maximum difference in the levels is ho.
274. The perpetuum mobile will not operate and the water will
not flow out of the funnel.
As soon as the water enters the funnel the radius of curvature of
the meniscus will begin to increase and, correspondingly, the surface
tension will gradually diminish. The water in the funnel will only
reach the section with that radius R where the surface tension exactly`
equalizes the weight of the water column h.
The radius of this section can be determined from the ratio
2
2nRot::rtr2dgh or R=§§-E-
20:.
275. The action of surface tension should in principle have an
effect on the position of the hydrometer.
In the case of the wetting agent the surface tension produces a
resultant which is directed upwards and is applied to the particles
of the liquid arranged near the hydrometer. By Newton’s third law,
the tube of the hydrometer should e acted upon by a force of the same
magnitude directed downwards. The hydrometer should take up
a lower position than in the absence of surface tension.
The reduction in the surface tension after the ether is added must
cause the hydrometer to rise slightly, i.e., it must register a somewhat
higher density than before the ether is added.
276. r z 1.5 mm.
Note. The surface tension acts on the external and internal surfaces
of the tube. Considering that the walls are thin and assuming to
a first approximation that the radii of curvature of the liquid surfaces
near the walls of the capillary are the same in size both outside and
inside the tube the forces acting on the internal and external surfaces
of the tube may also be considered the same. The force acting on the
internal surface is equal to the weight of the water raised into the
capillary by the surface tension, while the change in the weight of the
capillary is equal to twice the weight of this water.
Hence,
rig-1
4:rtoc
_277. Solution. Mercury effectively wets pure lead. Tightly fitted
sheets of lead form fine capillary ducts and slits through which mercury
is raised by the action of surface tension just like water in glass capil-
hry tubes.
278. F = 2oil = 480 dyn za 0.5 gf; A ; FS = 960 erg.
Solution. When the surface of the film is expanded the work done
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magnitude directed downwards. The hydrometer should take up
a lower position than in the absence of surface tension.
The reduction in the surface tension after the ether is added must
cause the hydrometer to rise slightly, i.e., it must register a somewhat
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276. r z 1.5 mm.
Note. The surface tension acts on the external and internal surfaces
of the tube. Considering that the walls are thin and assuming to
a first approximation that the radii of curvature of the liquid surfaces
near the walls of the capillary are the same in size both outside and
inside the tube the forces acting on the internal and external surfaces
of the tube may also be considered the same. The force acting on the
internal surface is equal to the weight of the water raised into the
capillary by the surface tension, while the change in the weight of the
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Hence,
rig-1
4:rtoc
_277. Solution. Mercury effectively wets pure lead. Tightly fitted
sheets of lead form fine capillary ducts and slits through which mercury
is raised by the action of surface tension just like water in glass capil-
hry tubes.
278. F = 2oil = 480 dyn za 0.5 gf; A ; FS = 960 erg.
Solution. When the surface of the film is expanded the work done
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by the external mechanical forces will be converted into the potential
energy of the liquid film associated with its surface tension. This
energy is known as the surface energy. When the surface of the film
is reduced the surface energy is decreased and is converted into the
work of surface tension and then into other kinds of energy: the
potential energy of the forces holding the movable side of the frame
and the thermal energy.
279. The frame will be acted upon during the first moments by
a force F = (oi, — oiz) l (Fig. 272) where oi, and az are the surface
tensions of the water and the soap nlm. The frame
will begin to move in the direction of the force F. F
280. Solution. The water will not pour out
if: (a) the sieve is made of a water repellent
material; (b) if the height of the water layer in
the sieve does not exceed
2oz.
ho T- W z 3 CID
If the height of the sieve is less than hg the I
water can be drained; when the height is larger .,..} Z i....
than ho, then, if the sieve is inclined, a layer of wa- ' '
ter deeper than hg forms near, its lower edge and Fig. 272
the water begins to seep through the meshes of the
sieve.
281. It cannot. While calculating the loss in weight, a correction
should be introduced for the action of surface tension.
Solution. A force F = 2::rol is exerted by the walls of the capillary
on the liquid. According to Newton’s third law, a force of the same
magnitude but in the opposite direction will be exerted by the liquid
on the capillary. The loss of weight in the case of the wetting. agent
will be less than the loss calculated by Archimedes law and larger
in the case of a non·wetting agent.
282. Solution. The height to which the liquid rises in the capilla-
ry is hg = The work done by surface tension in this case is
2
A = Fho = éég? . The potential energy of the liquid raised in the
capillary is h 2 2
h not
U=mg -§-·=dgJ`U‘2h0
or A
U- 2
Only half of the work done by surface tension is converted into
the potential energy of the liquid. The other half is expended on the
work against the forces of friction and is converted into heat. If there
were no viscosity and friction against the walls, the liquid level would
perform harmonic oscillations in the capillary with the height hg as
the position of equilibrium.
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283. Fat is soaked into the paper faster because the capillary
ducts in unsized paper are much smaller than in the fabric.
284. on=%)L z 70 dyn/cm.
Solution. The additional pressure produced in the bubbles of air
inside the liquid by surface tension can be found from the following
simple reasoning.
When the end of the capillary touches the surface of the liquid the
latter will rise in the capillary to a height h = 5% under the action of
a surface tension F = 2:rtrcc directed upwards. In this case the force F
is equalized by the weight of the liquid column.
If an additional pressure
F Zrtrct 2OL
AP Z F: wz}? · T
is set up in the capillary above the surface of the liquid (S = zrtrz
is the cross-sectional area of the capillary) the action of surface tension
will be completely balanced by t e excess pressure of the air in the
capillary while the weight of the liquid column in the capillary will
remain unequalized. Therefore, the level of the liquid in the capillary
should go down to the initial height and a bubble of air—a hemisphere
of radius R equal to the radius of the capillary r—will form at the
end of the tube. The required pressure in the bubble will be
2oz
AP-—R— (1)
where R is the radius of the bubble.
It can be shown that this expression always determines the excess
preissurei built up by the surface tension in closed bubbles inside
a iqui .
Formula (1) shows that the pressure in the bubble diminishes as
the radius of the bubble increases. The formation of a bubble at the
end of the capillary proves that the minimum radius of the bubble
is equal to the radius of the capillary.
Therefore, when on is calculated from the data in the problem the
radius of the capillary should be inserted, instead of R, in the calcu-
lation formula
a-’i’£*.
_ 2
285. AP:-zi ll'! as ae mm Hg.
8 MP2
The pump should be connected to the narrow capillary.
Solution. Let us denote the heights of the mercury levels before
the air is pumped_out by hi and hz.
The mercury in the tube will be in ecpuilibrium if the pressures
produced by the columns of mercury on t e two sides are equal in
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the cross section AB (Fig. 273). The total pressure in the cross section
AB is composed on each side of the pressure gh (mm Hg) created by
the weight of the mercury column and the pressure produced by surface
tension and equal to
L _2m·a __ Za Q
S W :rtr2 — r
For this reason the condition of equilibrium P
may be written as: { __
2ot _ zo "“
shi-I- T-=8hz+— .¤`
1 rz A
or l
},i..;,2=.?E.(.i.....L)=2.E‘.(Z°E.'..'Q?.) “ ig "
8 fz T1 8 rir2 _ 2
The pressure difference of the air should Fig' 73
compensate for this difference in the heights
of t e mercury columns, i.e ., it should be equal (in mm Hg) to
Ap=h,..h2=E°LZ.`!.T.'2.
E Tirz
286. h=?T z 3 cm.
Solution. The column of water in the tube placed vertically will
be held by two menisci, an upper and a lower one (Fig. 274), each
acting on the water with a force F = 2m·ot. Therefore, the height of
the column of water left in the tube can be determined from
the equation
Jtrzgh = 2F = 43TTG
.. Pom ..
287. 1..-;&-57%+h ~ 552 cm.
1;% Solution. After rising to a height h in the tube the
=§ water will compress the air contained in it and produce
4§I an excess pressure AP which can be calculated by Boyle’s
§ law and will be equal to
L P h
Fig. 274 AP=P—·P0=i-fw
The pressure P, = 3; produced by surface tension should in our
case balance the sum of the pressures created by the weight of the
water column and by the air compressed in the capillary, i.e., the
following equality should hold
2?=2%+dgh (d is the density of water)
from which the formula for Z can be calculated.
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224 ANSWERS AND SOLUTIONS
17. Humidity of Air
288. If the atmospheric pressure is H cm of water, the saturated
vapour Eressure shou d be not less than H -—h cm of water column
for the rst bubble filled with saturated water vapours to form near
the bottom of the test-tube. Therefore, as soon as heating begins, when
the temperature of the water is still low and the saturated vapour pres-
sure is ess than H —h, the water will fill the entire test-tube. When
the temperature T < 100°C which corresponds to a saturated vapour
pressure for water equal to H —h, the water level will draw away rom
the bottom of the test-tube. Upon further heating, as the temperature
and the saturated vapour pressure grow, the water level will sink in
the test-tube and at 00°C will take the same position as the level of
the water in the glass.
289. The relative humidity is 48.6 per cent and the absolute humi-
dity is 8.42 g/ma.
290. When the temperature is increased.
291. There will be no dew.
Note. It follows from the fact that both the masses of the air
being mixed and their heat capacities are equal, after mixing the
temperature of the mixture will be 15°C. The proportionality of
the saturated vapour pressure to the temperature shows that the satu-
rated vapour pressure at 15°C will be equal to 13 mm Hg. The absolute
humidities at 10, 15 and 20°C will be 9, 13 and 17 g/ms, respectively.
The surplus amount of water vapour in the air at 15°C will be equal
to 9—|-17 -2 ><13—-—= 0.-
292. 2.87 per cent.
293. 8.64 g.
Chapter III
ELECTRICITY
18. Coulomb’S Law
294. F.-=9.2>< 108 Eg- .
295. F =2.3 ><j_Q·¤ dyn.
Z 2
296. v =]/-—’%. For hydrogen v=1.59><108 cm/s.
N ate. The electrostatic interaction of the electron with the nucleus
should generate the necessary centripetal acceleration, i.e., according
to Newton’s second law;
E - Q
rz '— T
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297. At a distance of Z/3 from the smaller charge. The e uilibrium
will be stable during longitudinal displacements, if the ctharge q is
positive and unstable if q is negative. _
Note. In order to determine the nature of equilibrium consider the
forces arising for a small displacement of the charge q from the posi-
tion of equilibrium.
298. The negative charge q = gw; should be placed at a distance
% from the charge e. In this case the sum of the forces acting on each
charge in the system will be equal to zero. __
299. The test charge should be placed at a distance a = l (1 —|— V2)
behind the positive charge. The equilibrium will be stable.
Solution. The position of equilibrium can be determ1ned from the
equation
eq _ 2eq
az _ (l+a)2
The nature of equilibrium can be found if we consider the forces pro-
duced for small displacements of the charge q from the position of
equilibrium.
When the charge q is displaced from the position of equilibrium
the relative change in the distance from the charge —|—e will always
be larger than the relative change in the distance from the charge —-2e.
In other words, if the char e q is moved a distance x from the posi-
tion of equilibrium towards EIB system of charges, then
1 1
<¤—¤¤>2 > [(Z+¤)—¤¤12
Therefore, when the charge q approaches the charge e, the forces
of repulsion created by the charge e increase by a greater magn1tude
than the forces of attraction produced by the charge -2e, and the
resultant appears which returns the unit charge q to the posit1on of
equilibrium. When the charge is moved away from the charge e,
the forces of repulsion will for die same reasons diminish faster than
the forces of attraction. The resultant will be directed towards the
system of the charges, i.e., it will again return the charge to the pos1-
tion of equilibrium.
The equilibrium will be stable.
The curve showing the dependence of the force acting on the charge
q on the distance from the charge -{-e can be plotted qualitatively
if we reason as follows. _ _
If the charge q is moved closer to the charge e from the position
of e uilibrium, the difference in the relative change in the effect of
the fhiarges e and —2e will become greater and greater and, accord111€1Y»
the force of repulsion acting on the charge q, as it approaches the sYS·
tem, will increase continuously and very rapidly (Fig. 275). AS ${6
charge is being moved out of the system from the position of equ1l1·
brium tdie difference in the relative change in the effect of the Charges
e and -2e will become less and the forces built up by these cha1‘89S
will rapidly diminish at the same time.
15-1218
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226 ANSWERS AND SOLUTIONS
Therefore, when the charge q is moved out of the system from the
position of equilibrium the force of attraction at first increases (the
difference in the relative change of the distances is more pronounced
than the decrease in the forces? and then, from a certain distance b
onwards, diminishes and rapid y approaches zero. (The difference in
the relative change in the dis-
F tances becomes insignificantly small
and the principal part is played
by the decrease in each of the
forces Ofrépuzsion gcifges 2;;r§>duced by the charges e
300. q = 2.6 X 10*3 cgs elec-
trostatic units.
Note. The magnitude of the
Q' b r· charges can be determined from
Q Qs S .
..2, , { the equation
2 2
Forces 01'attractian % = Y gi-
Fig_ 275 from which we get q = m Vi
where y = 6.66 X 10*8 cm3/g·s
is the gravitational consant.
301. Before the halls are connected they interact with a force
F = 1 dyn and after they are connected w1t a force _equal to F2 as
as 1.6 dyn. After connection the charges on the balls w1ll be the same
and equal to 12.5 cgs electrostatic units. _ _
Note. When the balls are connected by a wire the charges w1ll be
distributed equally between the balls. _
302. e, = 8 cgs electrostatic units and ez = —2 cgs electrostatic
units.
Solution, The force of interaction of the balls before they are con-
nected is
e e
F i=—5;
and after connection the charge of each ball will become Q-? and the
force of interaction to
_ (°1*l*¢2)2
F2* 412
Hence,
e1e2=F 112
e,J,-.:2:21 1/F2
Solving these equations we get
ei-.=Z ( \/F2 -{-'[/F2-1*1):8 088 electrostatic units
ez: I (1/F;;—`\/F2-Fi): -2 Ggs electrostatic units
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When inserting the numerical data, remember that the forces of
attraction and repulsion have opposite signs.
303. e = l `\/mg tan ot z 180 cgs electrostatic units.
Solution. The force of interaction between the charges F, = g
should equalize the resultant of the forces of gravity and the tension
in the thread (Fig. 276) equal to F2 =
= mg tan cx. _
The value of e can be found from the V '
equality F, = F2. \
304. The balls will first go down, touch \
each other and then move apart a a \\
distance b= #2-. . · \
$/4 I \
Solution. Let us denote the charge and { \
the mass of each ball before contact by e E I 7, ¥
and m, and the length of the threads f; fi L--— \
y L. cz;
Since L > a·and L > b, we may write
the condition of equilibrium of the balls 7/
before contact (see the solution to Pro-
blem 303): mg
_.·i_=mg tan u:mg L Fig. 276
az 2L
On contact the charge e still remaining on one of the balls will be
equally distributed between both balls and the condition for the new
equilibrium of the balls will be
)"""`- ez _ _ b ezb
g /5 m··"‘g‘°“'l*·'”g@r.‘=*.;a··
s cz i Hence
· / : ’ ..
/• I b=:r‘
' I }/Z
a / g ..._...
6 / E 305. e=2l sin % I/`mgsin %-
`~" l Solution. The deflected thread will
(Z ~_\(}_ be acted upon by the weight F, = mg
C',} acting through the centre of gravity of
Fig 277 the thread and the gorco of interaction
of the charges F2= {-2- (Fig. 277) acting
on the end of the thread. The thread will be in equilibrium when
the sum of the moments of these forces is egual to zero.
It follows from simple geometrical cons; eratious that:
the moment of force F, is equal to %sin ot;
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· / : ’ ..
/• I b=:r‘
' I }/Z
a / g ..._...
6 / E 305. e=2l sin % I/`mgsin %-
`~"  l Solution. The deflected thread will
(Z ~_\(}_ be acted upon by the weight F, = mg
C',} acting through the centre of gravity of
Fig 277 the thread and the gorco of interaction
of the charges F2= {-2- (Fig. 277) acting
on the end of the thread. The thread will be in equilibrium when
the sum of the moments of these forces is egual to zero.
It follows from simple geometrical cons; eratious that:
the moment of force F, is equal to %sin ot;





228 ANSWERS AND SOLUTIONS

. ezl cz
the moment of force F2 is equal to 2-{ cos? ;
or, since a-..—=2t sin%, the moment of the force F2 will be
on
fi cot-?
4l sin;
2
The condition for equilibrium will take the form
cot-OL
2 41 sin-2-
2
Hence,
e:2l sin %lfmg sin%
306. The like charges will act with a force F, = é 1/§ = 0_02 dyn
in the direction of the perpendicular to the line connecting the first
G rg 6
’ \ _, +e 2
\\ F `gv +8
8 -:*+2 ’ ¤ /
/
I', Y \\ //
x · \ QQ “
,¢ l »\ /-4 \
1 ! E /// \\\
/
· 1 2
Fig. 278 Fig. 279
. . . 6
two charges. The unlike charges will act with a force F2 = 2; z
z 0.01 dyn directed parallel to the line connecting the charges q
(Fig. 278).
307. The negative charge q = %(1 -|— 2 `\/2); the equilibrium
of the system will be unstable.
Solution. Each charge at the four corners of the square is acted
upon by four forces (Fig. 279); two forces F, = F2 =.— ig- set up by the
(I
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ez
charges at corners 1 and 2; the force F3 = -2-(E Set up by the charge at
corner 3; and the force F, = %?- produced by the charge q.
For equilibrium to be established the geometrical sum of these
forces should be equal to zero, i.e.,
&..;i+__T/E
az _2a2 a
Hence,
4:% (1 + 2 V`?)
In order to determine the nature of the equilibrium of the system
it is enough to impart a small displacement to one of the charges and
estimate the change in the magni· F F
tude of the forces produced by the ~‘ r
other charges. 2
For the sake of simplicity, let us 5 "*—·——___
consider a small disp acement s of ls ",T *"‘“" “"=
one of the charges -{—e along the dia- I { { /
gonal in the direction from the centre \ I \\ /
of the square (Fig. 280). \ | \ /
Since the distance from this charge \ I B
to the charge q is the smallest, the Q x-7`\
displacement s will cause a much rl // \
larger relative change in the distance \ / \
to the charge q than the relative { 3
change of the distances to the other
charges. Therefore, the displacement Fig. 280
s will decrease the force F, more than
the forces F,, F2 and F3. Moreover, the displacement s will decrease
the angle between the forces F, and F2 produced by the charges 1
and 2. This reduction in the angle will slightly increase the resultant
of the forces F, and F2.
Thus, with the charge in the new position the force F, will delibe-
rately be smaller than the geometrical sum of the forces F, + F3 + F3.
In this new position the charge will be acted upon by the resultant
directed away rom the position of equilibrium.
19. Electric Field. Field Intensity
308. E = 1 X 10-* cgs electrostatic units = 0.03 V/cm.
309. E= 0; V: gf: 24 V.
Note. In order to solve the problem, use the principle of independ-
ent action of electric fields. The intensity of the field at the point A
is equal to the geometrical sum of the intensities of the helds set up
by each charge. The potential at the point A will be equal to the sum
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of the potentials that. would be established at this point by each charge
separately. _
2
310. E0=0; EA:-lg-Tg;.
Solution. The charge will be uniformly distributed along the entire
ring. Each unit of the ring length will accommodate a charge
... L
° " 2¤1—2
The intensity of the field set up by the charged ring at each point
in space will be the geometrical sum of the intensities produced by
the separate elements of the ring.
L,
ll { 4’L\ E,
6* { \\
. $7;....-
A al l'
¤|~ 6
* ‘
L, *2
Fig. 281 Fig. 282
Each element of the ring of length Z, will ca1·ry a charge ol, (Fig. 281)
and establish an intensity E , = -91%- at the point O. The symmetrically
arranged element Z2 will produce an intensity E2 of the same magnitude
but in the opposite direction. Therefore, when the intensities are
summed up over all elements of the ring they are mutually compensated
and the total intensity of the field in the centre of the ring will be zero.
The element l, at the point A (Fig. 282) will set up an intensity
E1 = -g-§% directed at an angle on = 45° to the axis of the ring.
At this point the element lz establishes an intensity E2 = 5% .
When _the intensities of these elements of the ring are added the
sum will include only the projections of the vectors E, and E2 on the
axis of the ring. In exactly the same way the projections of the inten-
sity vectors created by all the other elements o the ring will be includ-
ed in pairs.
For this reason the intensity vector at the point A will be equal to
o2¤R _ q 1/2
EA Zia? °°S °‘ ·· Za?
311. The leaves of the electroscope will be deflected through diffe-
rent distances. The maximum deflection will be observed when the
charge is transferred from the point A , the minimum one during trans-
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fer. fxéorg the point B and the one equal to zero after the contact at the
po1n ,
Note. When the charges are transferred to the electroscope by the
method described in the problem the divergence of the leaves of the
electroscope is proportional to the density of charge distribution at
the points of contact cf the ba]]_ The charges will be distributed on the
surface so that their density is
high? at the points on the sur- _,_ · [ ..
ace aving a greater curvature and ‘ _
lower at the points with a smal· ..
ler curvature. The curvature and, + -·.~!““|-- -
therefore, the density of the -I|#§$ QQQII- __
chaiige is larger at the point A than i _
at t e point B. { . _
312. sea Fig. 2ss. The ball + ====}$ :5:::: _
will have induced negative charges + --|·‘W ¢§:I|-
on the side of the positive plate + --·""'~·I- _`
and positive charges on the side -|·‘
of the negative plate. + I - · . __ "
The lines of force will be per- + l “
geadicular to the surface of the
8 · i .
The distortions in the shape and F g 283
arrangement of the lines of force _ _
are caused by the fact that the held of thé ¢¤P¤<>1t01‘ 15 8¤P€I‘P°S°d bY
the electric held of the charges ind11¢€d 011 tht? Sllfface of the bau-
314. (a) A held will exist inside and outside the sphere.
(b) A negative charge will appear on the internal surface of the
sphere and a positive charge on the external surface.
(c) The electric held inside the sphere will change.
(d) Only the electric held outside the sphere will change.
315. The charge will be distributed on the external surface of the
sphere. The intensity of the held inside the sphere will be zero. An
electric held similar to the held of the point charge e situated at the
centre of the sphere will be set up outside the sphere. _ _
316. The plates will begin to move apart due to the interaction
of the point charges with the charges indnced on each plate (Fig. 38A).
317. See Fig. 285. The density of the induced charges will diminish
from A to B on the surface of the plates facing the point charges.
Induced charges of opposite sign will be distributed un1f0rmly on the
internal surfaces of the plates.
318. (a) 0; 5%; gg; ‘§.
(b) The potentials will be O, ig; , jg, ‘6. In the Spaces 1, 2, and
3, 4 the intensity of the held will increase, and in the space 2, 3 it
will become zero. The charges on plates 1 and 4 will increase.
(c) Plate 2 will have a positive charge and plate 3 a negative one.
319. azgng :0.5 cm/sz.
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Note. The force acting on the charge in the electric field will be
F = eE. Newton’s second law equation for the motion of a. charge will
take the form eE = ma.
_ + - + 5 +
+ ..
+1 Q : ° < " *4 ¤ °
" W Ya N Y
+ _
_ + — + — +
Fig. 284 Fig. 285
320. Parabola; h = 2.8 mm.
Solution. The intensity of the iield inside the capacitor will be
V
E = T
The-electron will be acted upon in a vertical direction by the force
F = eE = e —§ (Fig. 286) which produces a vertical acceleration of
the electron equal to
i 5 .-£A;L
{ U l _ m —— m d
·}·· A -_ ·······—{‘j The equations of motion of the
l "~`_ r nd electron are:
{ F `~L:L in the horizontal direction
.. ` I Z vt
**·_-_—3—"***"* in the vertical direction
Fig. 286 ;,:.‘?£=.il’.£
2 2 m d 2
The electron will move as a body thrown horizontally above the
surface of the Earth.
The verticaldisplacement of the electron at the moment it escapes
from the capacitor will be
e V lz
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321. Ez"-? z 10 cgs electrostatic units z 3,000 V/cm.
322. (a) T :2:rt I//—-—-%—— ; (b) T =2Jt Vf·—-i;— ,
8 +*6 E 8 *7; E
Solution. If a charge —l-e is placed on the ball and the upper plate
is charged positively the ball will be acted upon in a vertica direction
not only by the force of gravity mg but by the force eE, where E is
the intensity of the electric field of the capacitor. This additional force
will change the acceleration of free fall of the ball in the capacitor.
The magnitude of this acceleration can be determined from Newton’s
second law equation
mg' = mg —}- eE
and will be equal to
g· = g-I-é- E
Introducing this value of g' into the formula for the period of
oscillations of the pendulum we find that the period of oscillations
decreases in the first case and increases in the second.
z_ z 2
323. Fzhéi mg=3mg=.-3gf; lz.-;-$:9.8 cm;
T3 Z 2n
2g
Solution. The period of oscillations of the ball in the absence of
the field is
T
The period of oscillations after the ball and the capacitor have
been charged (see the solution to the previous problem) will be
T2 = 2313 (2)
E +7;
Since T2 < T1, the upper plate of the capacitor and the ball had
charges of the same sign.
Squaring (1) and (2) and solving them for F we obtain
T2
Since the force of electric interaction of the ball with the plates
of the capacitor is larger than the force of gravity, the position of
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equilibrium of the ball will chan_ge when the sign of the charge is
changed.
The point A correstponding to the position of equilibrium of the
ball wil arrange itsel above the point of suspension O (Fig. 287).
The free fall acceleration of the ball under the simultaneous action
of the force of gravity and the force produced by the electric field
will be directed upwards and equal to
, F
g -7-n-—-g-2g
Therefore, the period of oscillations of the ball about the point A
will be
/ 1 T
————g l
ml •
I
ai
"*`rC*. |
gg//»<.J 'E .
0 lg' 1
I
I
Fig. 287 Fig. 288
324. The yiosition of equilibrium of the ball will change and the
.period of osci lations will diminish.
Solution. If the mass of the ball is m, its charge —}-e and the inten-
sity of the held in the capacitor E, and the ball is in equilibrium, the
thread will make such an angle on with the vertical line (Fig. 288) that
eE
tan oc = ——
mg
The free fall acceleration of the ball can be determined from Newton’s
second law equation
’=` g)2+(¢E)2
and will be equal to mg \/(m
TTL TTL
Hence, the period of oscillations of the pendulum will be
T:_.2,, l/,_é@,._;-2n \/...;___
Ee 2
2 ....
I/g +( U.)
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325. q z 5.9 X 105 coulombs.
Note. To solve the problem, use the expression for the intensity
of the -f1eld of a point charge E = 3%- , from which we have q = E,—2_
20. Work done by Forces in an Electrostatic Field.
Potential
326. v = 32,600 km/s.
Solution. When the electron moves the work done by the forces
of the electric field will be
A = Fd = eEd
According to the law of conservation of energy, the following must
be true:
mvz mv?
A-···?· OI'
Hence,
v=`|/@$:3.26 X109 cm/s
327. d=%=5 cm.
328. o = 8 >< 10*3 cgs electrostatic units.
Solution. The charged metal sphere creates in external space the
same electric held as would be set up by a ploint charge q placed in
its centre. The potential at any point in suc a field is
-.2.
V`- R
Hence, the charge on the sphere q = VR and the charge density on
the surface of the sphere is
__ q ___ V _ 1 . .
0... 4nRz ... 4nR.~—-—— X10 cgs electrostatic units
329. V = 300 V and 150 V.
Solution. The principle of independent action of electric fields
makes it possible to calculate the potential at any point in the field
established by a system of point charges as the sum of the potentials
set up by each charge separately
"1 T 2
When a dielectric is introduced the potentials at all the points
in the field will be reduced e times.
330. A = q (VB — VA) = 270 ergs.
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331. q, = -}-10.25 cgs electrostatic units; q2 --= -10.25 cgs electro-
static units. _
Solution. In order to solve the problem, use the principle of the
inde endent action of electric holds.
Tlie potential of the first ball V, is the sum of two potentials: the
potential established by the charge on one ball and equal to % and
the potential set up by the charge on the second ball and equal to %
(knowing that r < a).
Thus,
_ .2L &
V¤· A + a
Similarly,
..& EL
Var r + ..
Solving these equations for qi and q2 we find that
A-¤»-——r‘i;;;L’¤ qt-ar-—*‘i;;;L’2
Utilizing rg < az, we can simplify these expressions and obtain
for the magnitude of the charges:
q1= ··% (FVz—aVi), qz= —·%· (*V1— ¤Vz)
332. Outside the spheres E=-q%l_£- and V=§_7+Q-; inside the
large sphere E=;_%- and V: $-4--%; inside the small sphere E=0
and V=-%—|—g€ .
Solution. To solve the problem, use the fact that the charge distri-
buted on the surface of the sphere produces outside the s here a field
s1m1lar to that of a point charge situated at the centre ol) the sphere.
Outside both spheres the charge Q produces an intensity EQ = —%
and a potential VQ = é)-; the charge q establishes an intensity Eq ==
= 7%- 3Ild 3 pOlG€DlSl3.l Vq = % , and l.l'l9I‘€fOI‘6, OD the basis ofthe pI`lD‘
ciple of independent action of electric fields the intensity and the
potential of t e field outside the spheres will be
- Q q 0+9 Q‘l‘q
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_ .2L &
V¤· A + a
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..& EL
Var r + ..
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Inside the large sphere the intensity of the held established by
the charge Q is zero, and the potential in the held set up by this charge
will be the same at all points and equal to VQ = g- ;the charge q
sets up at these points an intensity Eq = gi and a potential Vq = i
r
and therefore the total intensity in the space between the spheres is
E = EQ -|— Eq = gand the potential V= VQ -|— Vq = {I-—|-—€—
Correspondingly, the intensity of the helds of both charges inside
the small sphere will be zero and the potentials constant, i.e., EQ =
Eq= 0 an E = 0,
Q q Q q
VQ-?-‘"’ V =— Hlld V=—-I-—·
b ’ q a b a
333. Q = 83 cgs electrostatic units.
Solution. Since, as is given in the problem, the charge is distri-
buted with the same density o on the surface of both spheres the charge
on the external splhere will he qi = 4nR°o and on the internal one
qz = 4:1:-%, and t e required charge will be Q = q, -|— qz.
The work needed to transfer one positive unit of electricity to the
common centre of the spheres is numerically equal to the potential V
at this centre. As in the solution of Problem 332 we shall ave
R r
After inserting the values of q, and gz we shall obtain the expression
for the charge density
V
°‘/in (12-4-r)
for qi and q2, respectively,
RZV r2V
<*¤=n:r; and *2* nz-
and, hnally, for Q:
z + R2
Q =‘?— V
-{—R
334. V, = Ed = 1,500 V; V2 =-· E (d -1) = 1,200 V. _
N ate. The introduction of the metal har removes the electric
held in the entire volume occupied by the bar. When a unit charge_1s
transferred from one capacitor plate to the other the electric held w_1ll
only do work over the path (d -— 1) and, correspondingly, the potential
difference begweegn the plates will drop to V2 = E (d -- 1) after the
bar is intro uce .
335. The leaves will all the time be deflected by the same angle.
N ate. When the electroscope is charged as described in the problem
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its readings will be proportional to the potential on the surface of the
body. But since the potentials at all the points on the surface of the
conductor are the same in an electrostatic held the divergence of the
leaves of the electroscope will also be the same for
15 all the points.
336. See Fig. 289. The lines of force are every-
where perpendicular to the equipotential surfaces in
the direction of decreasing potential. The intensity
of the held is higher where the equipotential sur-
faces are closer to each other.
337. A = O.
Solution. The work done duing motion along
Z straight lines 2, 3 and 4, 1 is equal to zero since
Fig. 289 the force F = qE is perpendicular to the direction
of motion (Fig. 290).
The work done by the force R in the sections 1, 2 and 3, 4 is equal
in magnitude but opposite in sign. Therefore, the work done over
the entire closed circuit will be zero. This result is true for all electro-
static fields and closed circuits of any shape.
+ ll`_?_4_*7q ·- "$"”
————;——-··-
+ 1 A B
+ _ _
+ ··s·*· ·2·"7·*
Fig. 290 Fig. 291
338. Solution. To prove this, calculate the work done by the
electric forces when the charge q moves in a closed rectangular circuit
ABCD (Fig. 291).
Since the lines of force are parallel the intensity of the held E
along each line of force is constant.
As there are fewer lines of force in the section AB than in the
section CD, the intensity of the held E, and, hence, the work A, done
to move the charge in the section AB will of necessity be smaller in
magnitude than the intensity E2 and the work A2 in the section CD.
The work done for motion in the sections BC and DA will be zero
sgice the vector E is perpendicular to the direction of motion of the
c arge.
Therefore, the work done over the entire closed circuit ABCD
equal to Ai—A2 will not be zero.
Since the work done by the electric forces in an electrostatic held
is always equal to zero in any closed circuit the result obtained is
mcom atible with the basic properties of electrostatic helds and the
held d)escribed in the problem cannot exist.
339. Solution. To prove this, calculate the work done by electric
forces in a circuit ABCD (Fig. 292) enclosed by the sections of the radii
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AD and BC and the arcs of the circles AB and CD coinciding with
the respective lines of force.
Since the lines of force are parallel the intensity of the field E,
is constant on the line AB and that of the field E2 on the line CD.
The work in the section AB will be eqlual to
E,Roi, in the section CD to Ezra. and in t e sec- l, {
tions AD and BC to zero (the vector E is perpen— Z‘1’_"r§
dicular to the direction of motion of the charge).
As the work done by electric forces in a closed
circuit in an electrostatic field is always equal to
zero (see Problems 337, 338) we have
E,Rot—E2roc=0 R \ ,0
Or la!
@1-;. ‘¢¤’ "
E2 ’ R *1)*
which was required to be proved. 0
Fig. 292
21. Electric Field in a Dielectric
340. See Fig. 293. The sharp change in tho number of the lines
of force, as the boundary of the dielectric is passed, can be explained
by the action of the polarizing
I charges set up on the boundar-
\\ / iesiéaf the die ectrics in electric
. fie s.
\ / 341. Ei=·$=0.l cgs elec-
1
Q + 4/ trostatic unit; E,= % =
._ ,,____ F _____________ :0.075 cgs electrostatic {init.
//.4./ A \\_ 342. q' = iii q; 4;*:.
-1
t :2;-0-
/ Solution. If there were no
dieleigtric around th; balll, it
wou set u a iiel wit an
intensity P
Fig. 293 Ei: ji
T
When a dielectric is present a field of intensity
<1
Ez=·;i
will be generated.
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_ q :-:-1 . .
The difference E = E, — Ez = 2--;- 1S obviously equal to
the intensity produced by the polarizing charges q' appearing near the
charged body (Fig. 294). Since these charges are also distributed
uniformly over the surface of the
ball it may be assumed that
_;
E-. T2
_Comparing the expressions ob-
- — tained for E we find that
` ` 4*8-*1 q
... - 1 8
\ / " _
·* · The surface density of the po-
larizing charges o' will obviously
be equal to
,_ q' _e—-1 q _a—1
° _4:rcR--Zn "` B 4¤R2 " B °
Fig- 294 where e is the density of dis
tribution of the charge q on the ball.
3 (1
343. b=G b<(Z.
— 0
Solution. When the balls are immersed in the oil they will be acted
upon by their weight mg and the buoyancy——mg @9 which will pro-
duce the resultant mg $ .
The electric interaction of the charges on the balls will be £
The condition for equilibrium of the balls may be written as
_ 2
mg-{%Q tan oc:-£E (1)
(the solution is the same as in Problems 303, 304).
Since
b
tan OL = EZ
and
__mga3
L`- 2e2
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(from the solution of Problem 304) and introducing these values into
equation (1) and cancelling mg and e, we get
3 —·E·"
b`“ l/ e ((1-do)
22. Capacitance and Capacitors
S'6 . .
344. Qi=—=3.2 cgs electrostatic units;
4nd
Q2 :%:7 cgs electrostatic units.
Note. In the hrst case the magnitude of the charge on the plates
will remain constant when the oil is poured in; the capacitance of the
capacitor will increase c times and, accordingly, the potential diffe-
rence between the plates and the held intensity in the capacitor will
also become e times smaller.
In the second case, when the oil is poured in, the charge on the
lates will increase e times due to the increase in the ca acitance,
gat the potential difference and the intensity of the helei) will not
c ange.
345. Solution. If one of the bodies carries a charge q and the other
body sets up a held intensity E at the point where the hrst body is
situated, the force acting on the hrst body will be equal to F = qE.
Since the potentials of the conductors are maintained constant
then, when the dielectric is ‘poured in, the intensit of the held E
set up by each body should also remain constant at ail points. On the
other hand, when the bodies are placed in a dielectric their capaci-
tance will increase e times. Therefore, if the potentials care to be kept
constant, the charges on the bodies should also be increased e times.
If is the charge on the hrst body in the air, it should become eq
after the bodies are placed in the dielectric and the interaction between
the bodies will be F2: eqE = SF; where Fi = qE is the force acting
on the body in the air.
346. In the hrst case the force will diminish in proportion to 1/ e
and in the second it will increase in proportion to e.
Solution. If the magnitude of the charges q remains unchanged,
the intensity of the held E will diminish e times when the dielectric
is changed, i.e., E2 = gi- . Accordingly, the force equal to F = qE
acting on each ball will be decreased e times.
Second case. See the solution to Problem 345.
347. The charges will move from the hrst ball to the second; qi —
- Q, z 7 cgs electrostatic units; V = 2.6 cgs electrostatic units;
Q, = 13 cgs electrostatic units and Q2 = 27 cgs electrostatic units
(Q, and Q2 are the charges of the balls after they are connected).
I6—l2l8
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2;,2 ANSWERS AND SOLUTIONS _
Solution. To solve the problem, determine the potentials of each
ball. Since the balls are a long way apart it may be assumed that
v,=-Q and V2:-Q
r R
since V, > V2 the charges will move onto the second ball. The motion
of the charges will cease when the potentials of the balls become the
same. The following equalities wil then hold
Q
V=·Q,4=·j{g·» Q4+Qz=Q4+Q2
Hence, the charge on the hrst ball Q, will be
Q 1 = ;;j|_LE (Q4 + Q2)
and the quantity of electricity transferred from the hrst ball to the
second will be
_ Rq4 rqz
Q4 Q1- ,+14 rxr
C1V1+CzV2
348. V= -;---:260 V.
C,—|—C
Note. In order to golve the problem, determine the total charges
of (fh; capacitors and theilcpmbined capacitance of the capacitors C,
an 2 connecte in para e .
349. The quantity of electricity transferred from the first capacitor
to the second is
q= :oX 4o—»· oooiombs
Solution. Before the capacitors are connected their charges are
Q4 = C,V, and Q2 = C,V, respectively. The charge remaining in the
battery after connection is C, V, — C2V,,. The capacitance of the two
capacitors is C, -|- C2. The potential difference between the plates of
the capacitors after connection is V = . The charge remain-
. 4 2
mg across the Igaltes of the iirst capacitor after connection will be
Q' = C4V=C4 . The quantity of electricity transferred
4 z
from the first capacitor to the second is
C4Cz (V4+Vz)
7 = Q4 ·· Q' = ····6r‘"-·
1+C 2
350- V=—·-{Li/I-llE= 2.7 V whore q is the charge on the small drop
and N is the number of drops.
f Note. In solvmg the problem ooo the formula for the capacitance
° the ball and calculate_1;ho ]_'&dil]S of the large drop.
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351. It cannot because the capacitors would be punctured. The
voltages in the capacitors will be V, = 6,000 V; V2 = 3,000 V and
V3 = 2,000 V, reslpectively.
Solution. It fol ows from the fact that the charges across the plates
of the capacitors are equal that
Vic: = V2C2• V2C2 = Vacs
and
V1 + V2 + Vs = V
Solving these equations will give the required answer.
352. C= ¢¤.—·4.2 cm. When the bar is shifted the capa.
citance will not change.
Note. In order to solve the prob- + + +
lem consider the capacitor with the ++1, + * * 1+ +
bar inserted in it as a system of two + + +
plane capacitors connected in series. i @ 1+5
353. he capacitance will be dif- + + + *
ferent. It will be larger in the se- + + + ++ +
cond case. `+ .,. 1. +
Solution. In the first case there
will only be charges on the inside 0
surface of the larger sphere. In the -— — # _
second case the charges will be on * "' · ‘ ‘
both sides (Fig. 295) and the capaci- _
tance of the entire capacitor must be Fig- 295
calculated as the capacitance of a sy-
gsgm of two capacitors connected in parallel and with plates AB and
• Q2 gnqz Q2 CV2
Q “ s s d 2C 2
1 F
355. 0 =iT-Fl/-2-E-~ 5 cgs electrostatic units.
d2P
356. V=1f-ES,-·-=4 cgs electrostatic units:-1,200 V.
Solution. The force acting on the upper plate is P =%?- (see th¤
solution to Problem 354) and the capacitance of the capacitor is
S
C = `ZE1"
Hencq»
_ svz __l/ s¤4¤'p"
hm ml "·· Ti
357. In the second case.
Solution. In the hrst case when the plates are drawn asart the
potential difference remains constant but the capacitance an , there-
16*
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fore, the charge across the lplates diminish. This will gradually decrease
the interaction between t e plates.
In the second case the charge across the plates remains constant.
Therefore, the interaction between the plates will keep the same value
it had initially while the plates are being drawn apart.
Therefore, when the p ates are moved identical distances more
work will be done in the second case.
358. 8 = 3.
23. The Laws of Direct Current
359. R = 0.017 ohm.
360. One Yakobi’s unit is 5.75 ohms.
361. R = 1.1 X 10*11 cgs electrostatic units.
Note. In order to convert the resistance into cgs electrostatic
units, use the definition of the resistance from Ohm’s law:
__ Vvolts _ 1 · ·
Rohm- Iampcms -30OX 3X 109 cgs electrostatic units
362. The resistance of the wire is 313 ohms `higher in summer.
The change in the length of the wire gives a correction that does not
exceed 0.6 ohm.
363. Z = 16 cm.
Solution. The resistance of the lamp filament is
V2 l
"‘=w·*"s‘
The resistivity of the incandescent filament is
9*9 L
0 T0
The length of the filament is
l_ RS __ RST0 __ VZSTO
¢> 0oT NPOT
364. I :2a is ten times larger than in normal burning.
e
365. C -- zi-X-·A.
Solution. The capacitance of the capacitor C = zag-IE ,
The rezsistance of the capacitor after hllgng it with electrolyte
R = é-E-and its conductivity A = -F=—2- .
Hence, C=-ZE);-A.
The expression obtained is of a general nature, is true of capacitors
gf any shape and is widely utilized in electrical engineering calcula-
ions.
366. Lenz’s unit of current is 0.065 A.
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Solution. It follows from the laws of electrolysis that the quantity
of substance liberated on one electrode M = é.- %I t where F is
Faraday’s number; I is current in amperes; t is time in seconds and
n
is the gram—equivalent of the substance.
On the basis of Avogadro’s law, the volume of oxygen evolved when
the cu1·rent is passed will take 1/3 of the volume of detonating gas at
a pressure of 760 mm Hg and will be equal to V = 13.72 cms. Hence,
the mass of the liberated oxygen M = dV = 0.0196 g. The cu1·rent
, , , , M F n
corresp0nd1ng to Lenz s umt will be I =7A-
367. R, = 10 ohms; R2 = 20 ohms; R3 = 60 ohms.
Solution. When the rheostat is cut out the current is I 0 = 2; =
= 4 A. The resistance Ri can be found from the equation 0
Ri+R0‘-Z—i·—— or Ri=—L—R0
Therefore,
V
Rz=·j*·§"·(R1+R0)

and
V
Rs=·]···_j·(R2+R1+Ro)
0
368. The galvanometer should be cut into the circuit in series.
The scale of the instrument will be: oo; 1.2 >< 107 ohms; 6 >< 10° ohms;
4.0 >< 10° ohms; ...; Egg >< 10° ohms where n is the number of the
division.
The minimum resistance that can be measured is 3 >< 105 ohms.
Note. The values of the resistance Rn corresponding to separate
divisions on the galvanometer scale can be determined from the for-
mula
V
Rn::m
where V is the mains voltage; n is the number of the scale division
and I 0 is the current corresponding to one d1v1s1on on the galvanometer
scale.
369. I0 = 5.05 A. _ _ _ _ _
Solution. If the voltage in the cu;/cuit IS V, the current in 1t before
the amineter is cut in will be I 0 = F, and after the ammeter is cut
. V
1n I = 1-- . Hence,
1 R+Ro
I .._1i.”l'..1E ji
0** R -
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R0 _
370. R:.-;=50 ohms (n-20).
Note. The response of the galvanometer can be reduced n. times if
a current of $1 is passed through the shunt when the current in
the circuit is I.
371. R = 0.032 ohm. The response of the instrument will be dimi-
nished 250 times.
372. 0.5 V per division.
Note. For a current I = 1 mA to flow through the instrument its
terminals should have a voltage of
V=IR=10‘3 X 500= 0.5 V
373. Before the voltmeter was connected the voltage was V ==
= 105 V. The error is 5 V.
374. R = $5% == 61.2 ohms. The resistance R' calculated on

the assumption that R0 -> oo will be 1.2 ohms less than the actual
value.
375. For the 1 ohm resistance the measurement error using circuit a
will be 0.1 ohm or 10 per cent, and using circuit b it will be 0.001 ohm
or 0.1 per cent; for the 500 ohms resistance—0.1 ohm or 0.02 per cent
and 167 ohms or 33.4 per cent, respectively.
Solution. If V and I are the readings of the voltmeter and the
ammeter, the resistance R' :5% calculated from these readings will be
equal to the total resistance of the section in the circuit bb' when
measurements are made using (a) and to the resistance of the section cc'
when measuring by (b), i.e., it will he related to the resistance R by
R' = R —{- R
in the first case and by 1 G
Rl __ HRD
2* R+R..
in the second.
Comparing the values calculated from these ratios with the actual
value of the resistance R one can find the errors permitted when measu-
rements are made using (o) and (b).
These errors are caused by the fact that in the first case (a) the
voltage drop across the internal resistance of the ammeter is not sub-
tracted from the voltmeter readings in calculations, and in the second
case (b) the current taken by the voltmeter is not subtracted from
the readings of the ammeter. Therefore, the resistance R' calcu-
lated only from the readings of the instruments is in the Hrst case
larger and in the second case smaller than the actual resistance R.
When the resistance R being measured drops in (a), the reduction
of voltage shown by the ammeter will form an increasing share of the
readings of the voltmeter and the circuit will produce increasingly
larger relative errors. When the resistance is reduced in (b) the current
taken by the voltmeter diminishes. The error in the readings of the
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ammeter and therefore the relative error in the calculation will also
diminish.
The circuit (b) is more effective for low resistances and (a) for
higher ones.
376. V = Sl.2 V.
Solution. The resistance of the section AB is
R=.j>&...
R0-|-2Ri
The current flowing through the potentiometer is
[-..3L.
The voltage taken from the potentiometer is
_ _ 2VRi _
377. By 10.4 V.
Solution. The resistances of the lamp and the appliance are
2
121-:-%%:240 ohms and R2=TI/@-:60 ohms
The resistance of the circuit before and after the appliance is switched
on is
R'=R0-|-Ri:-.246 ohms and R"=R0-|— =54 ohms
The current in the circuit before and after the appliance is switched
on IS
V B 12
I i=-I? Q 0.49 A, `
V E ·
IZZTZ A K
The voltage drop in the wires is
V6=IiR0=2.9 V and A
v;=1212,,=1s.s v FIS- 296
I 2pl
, 5 =L‘...<L_._
378 Vi
Note. The resistance ofthe input wires is R = Eg ,
379. The current will flow since the potentials of the conductors
AB and CD are different. The directions o all the currents which flow
are shown in Fig. 296. The gotentials at the points A_, B, C and D
will change. The potential ifference between the points A and C,
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and also between B and D, will diminish. The potential at the point E
will be lower than the potential at the points A and B, and the poten-
tial at the point K wil be greater than the potentials at the points C
and D.
380. If the bridge is in balance the readings on the galvanometer
will be the same whether the switch is open or closed.
Solution. The bridge is not in balance. The potentials at the
points A and B are different. When the switch is closed the conductor
AB will carry a current and the entire distribution of the currents will
be altered in the circuit. This will be tantamount to a change in the
total resistance of the circuit and in the current flowing through the
element. When the switch is open or closed the readings of the galva-
nometer in an unbalanced system will change.
The bridge is in balance. The potentials at the points A and B
are the same. The distribution of currents in the circuit and _the current
flowing through the element will be the same whatever the position
of the switch.
381. Lenz’s unit for e.m.f. is equal to 0.38 V.
382. 6 A.
Solution. The internal resistance of the battery for a closed circuit
can be found from Ohm’s law
r = i- -- R = 1 ohm
I1
The short-circuit current will be
I :;:6 A
383. It will not.
2
Solution. The resistance of the lamp R = % = 202 ohms.
The current produced in the circuit composed of the lamp and the
battery is
‘6
The voltage across the poles of the battery is
V = IR = 93 V
i.e., it is 17 V lower than the voltage corresponding to the normal
intensity of the lamp. The lamp will not burn at full intensity.
_ The same result can be obtained by comparing the current {lowing
in the circuit of the batteries and the current needed for the lamp
to burn at normal intensity and equal to I =
384. r;- :o.s Ohm.
— 2
Solution. ln_the first case the current is related to the e.m.f. and
the internal resistance of the storage battery by the equation
‘6 = I4 (Rl —|— T)
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In the second case
‘6 = Iz (R2 + rl
The e.m.f. and the internal resistance of the storage battery are
determined by solving these equations.
385. 46; $3 4.7 V.
Solution. If R is the total resistance of the circuit, ‘6, is the e.m.f.
of the storage battery and $2 is the e.m.f. of the element, the current
in the circuit in the hrst case can be determined from the equation
I,R = (64 + (62
and in the second case from
12R = (64 '“‘ (62
Hence,
_ I1 + I2
if $2
ssc. z,=%s,=0.s6 v.
1 2
Note. See the solution to Problem 385. Bear in mind that when the
storage battery and the cell are in opposition the current and the e.m.f.
of the storage battery will have un ike signs and the Ohm’s law equa-
tion for this case will take the form:
(GR I ZR = $2 — ‘6;
387• :§'$ V•
388. (62 = 1.8 V.
Solution. The e.m.f. of the cell and the storage battery establish
currents opposing each other in the section of the potentiometer AB.
Obviously, the current in the galvanometer circuit will cease to flow
when the potential difference V set up at the ends of the section AB
by the cel _becomes equal in magnitude to the e.m.f. of the storage
battery, i.e.,
V = (gg
When the circuit is in balance no current is taken by the galvano-
meter circuit. Therefore, it may be assumed that the increase in the
potentials at different points in the potentiometer is proportional
to the increase in the resistance of the section AB, i.e.,
V -;
Hence, ·
V=-S.? V0 and $2;-"'gT'V0
389. 39.5 ohms. _ _
Solution. When the slide is shifted from the position of equilibrium
the current in the galvanometer circuit will e determined by the
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difference between the e.m.f. of the storage battery and the potential
difference at the points AB set up by the cell. When the slide is shifted
througlh one division the potentia difference increases or decreases
(see t e solution to Problem .388) by
1
AV =. 7 V0
where n is the number of divisions on the potentiometer scale.
If X is the resistance of the galvanometer, the current flowing in
its circuit can be found from the equation
I (r —-|- X ) = AV
Hence, X:-L};-—r = -Ig?-r.
When the slide is shifted through one division the maximum per-
missible value of X should tproduce a current of I ·-= 10-* A, suffi-
cient to deflect the pointer o the galvanometer by one division, i.e.
2
390. R=6 ohms; r=;f-—R=4 ohms.
Note. The unknown resistances can be found from the equations
of Ohm’s law for a closed circuit
I (R —|— r) = °6
and for a section of a circuit from
V = IR
391. V = O.
Solution. Since the storage batteries are connected in series, the
e.m.f. of the battery acting in the circuit will be 2 ‘6. The total
resistance of the circuit is equal to 2r. The current set up after the sto-
rage batteries are connected can be determined from the equation
2‘6=I2r or I =-cg
The potential difference across the terminals of any storage battery
is
V = Ir — (6 = 0
392. When the internal resistance of each storage battery is equal
to R.
Solution. If ‘6 is e.m.f. and r the internal resistance of one storage
battery, then for series connection an e.m.f. of NE will act in the
circuit, the resistance of the circuit will be R + Nr and the current
I .. _,.1!‘.§..
1 V R -|—N r
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in the case of parallel connection
Ir- ‘6 -...9Lé.
_ r _ NR-]-r
Comparing these equations we find that I 1 = I 2 at R = r.
393. Four lamps.
Solution. The resistance and current in each lamp will be
V2 N
Ri=—N— 811d Ii=—i/,—··
When m lamps are connected gn parallel the resistance of the external
circuit will be R = gn-} = % . So that the lamps burn normally the
current in the circuit should be
N
I=IflIi‘·=··r£Li/···
Introducing these values of R and I into Ohm’s law equation for
an entire circuit, we get
mN V2
Hence,
- (‘6 ··V) V ..
m- Nr ....4
Another way of reasoning is also possible (see the solution to
Problem 394).
394. rz = HO.
Solution. If n storage batteries are connected in series, the e.m.f.
of the battery will be ‘6 = n‘6i and the internal resistance r = nr,.
With a current I the voltage drop in the internal resistance of the batte-
ry will be equal to V' = Ir.
By Ohm’s law the entire circuit should have
‘6 — V = V'
or
R6; ·— V = INT1
Hence,
V
n °61···I T1
395. r=l ohm; ‘6=3V.
Solution. It follows from Ohm’s law that
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for the first case and
(6 -— V2 —'= Izr 8IId V2 = IZT2
for the second case.
Solving these equations we find that
T = (V2··V1) "1F°2 .6 __: V1V2 (l'2·· T1)
Virz-··f1Vz ’ Vifz-·T1Vz
396. V = 3.2 V; I, :1.6 A; I2 = 0.4 A.
Solution. The resistance of the external circuit is
R =-22-= L6 oh S
n+rz m
The current (6
The voltage drop in the external circuit
V = IR = 3.2 V
397. In each group there should be m = 3 storage batteries con-
nected in series; I = 10 A.
Solution. If m storage batteries are connected in series in grou s
the resistance and the e.m.f. of each group will be mrc and m‘$,,. If the
total number of the storage batteries is N, one battery will contain in?
groups, and the resistance and the e.m.f. of the battery will be T]?
and m‘60 respectively.
The current i'n the circuit can be determined from the Ohm's law
equation
I__ miéo _ N°50
M mzro W N R
ITLT0 ··I·· T
The current I will reach its maximum at that value of m for which
the denominator of the fraction is smallest.
Since the product of thief terms in the denominator does not depend
on m and is constant (mrc % = N Bro) the Values of the denominator
will be smallest when its terms are equal to each other, i.e., when
N R mzr
mT0=-T OI'
01*, in other WOITIS, When the internal resistance of the battery becomes
°<Iual to the resistance of the external circuit.
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Therefore,
ro
will correspond to the minimum denominator and, hence, to the
maximum current in the circuit.
398. nz]/¥; m:]/@2*2.
o
Note. See the solution to Problem 397.
The resistance of the group is % , the number of groups is n = %
and the resistance and the e.m.f. of the battery is
N N
,=£<z.=.g>., ·6=,,·60=.i<i
m m m.
With any value of m the current in the circuit is
I = -—————N N‘6°
r
71,.9.-|-mR
399. Number of storage batteries is 160. The battery should be com-
osed of 40 groups connected in series. In each group four storage
Batteries are connected in parallel.
Solution. The cu1·rent produced by the compound battery is equal
(see the solution to Problem 398) to
I .—: (1)
A battery of N elements will produce the maximum current when
it is composed in such a way that its internal resistance is equal to
the resistance of the external circuit (see the solution to Problem 397),
i.e., when in the- denominator of equation (1)
..1.&l=mR (2)
m
Solving equations (1) and (2) simultaneously for N and m we
find that
° 47°0RI2
‘63
NT0
”* = I/-IT- 4
N and m calculated in this manner determine the minimum number
of the storage batteries that should be taken and also how they should
be connected.
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400. (G = 12 V.
Solution. If a source of current with an e.m.f. force ‘6 is cut into
a section of a circuit, the current in this section will be determined
by the joint action of this e.m.f; and the potential difference applied
to the ends of the section.
The storage battery is connected for charging as shown in Fig. 297.
The current flows in the opposite direction to the e.m.f. ‘6. The Ohm’s
law equation for the section of a circuit with a
+ "‘ storage battery may be written as V —- ‘6 = IR.
_ Hence, ‘6= V—IR.
401. R = 1 ohm.
Solution. The Ohm’s law equation for a sec-
tion of a circuit with a storage battery and an aux-
8 iliary resistance R will be
V —-· °6 = I (r -{-· R)
Hence,
Fig. 297 R: V—‘6—Ir
I
402. R0 = 5.5 ohms. If R > R0 the battery will be charged.
If R < R., the battery will be discharged.
Solution. So that current does not flow through the battery the
potential difference between the poles of the dynamo should be e ual
to the e.m.f. of the battery, i.e., V = $2 or, in other words, the vollta-
ge drop inside the dynamo should be
Ir = ($1 — (62 (1)
Utilizing the equation V = ‘62 and knowing that the entire current
produced by the dynamo passes through the resistance R0 we may write
IR 0 =· (63
It follows from equations (1) and (2) that
‘6
R0:-(5%-6;-:5.5 ohms
403. 5 A.
Solution. The voltage supplied by the charging plant can bg found
from equations ‘
V '* {61 = IIT
V= ‘6,-|-I,r= 110 V
The current at the end of charging is
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24. Thermal Effect of Current. Power
404. t= 1.42 S.
405. t= 4 min 40.6 s.
406. X = 2 ohms.
Note. Use Ohm’s law to determine the currents in the circuit before
and after the shunt is switched on and calculate by the Joule—Lenz
law the amount of heat liberated in the heater in both cases,.
407. 40; 45; 37 W; 33; 50; 71 per cent.
Solution. The current in the circuit is I :-1,-gg.
2
The useful power N=I2R= . 2
The total power developed by the battery N0=‘6I zwtg. ,
r
ee iencyn-No-R+r .
Th fHc° -—--£V——— R
The growth in the external resistance simultaneously reduces both
the total power developed by the battery and the losses due to the
liberation of heat by t e internal resistance of the battery. In this
case the losses diminish at a faster rate than the total power.
When the resistances are high the change in the useful ower is
ahected primarily by the reduction in the total power of the Iliattery.
In the case of low resistances, the greater art is played by the reduc-
tion in the losses. For this reason, when a liow resistance cut into the
external- circuit is increased, the useful power grows despite the drop
in the total power.
The battery gives the maximum useful power when the external
and internal resistances are equal.
408. a: = pn.
Solution. Assume that the internal resistance of one cell is equal
to r, its electromotive force is ‘6o and the resistance of a unit length
of the wire is R,.
Then, after the wire of length l is connected, the circuit will carry
a current
1 =....£6.9_.
* nr-|—lRi
Every second an amount of heat
n2°63
will be liberated in the wire and an amount of heat
_ Q _ n2‘6§
°*"T' (nr-4-zR,)2 R1
on each unit length of the wire.
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When a wire of length pl and as cells are switched in, the amount
of heat liberated on each unit of wire length will be
- $*6%
gz- <==r+pwo¤ R‘
When both wires are heated to the same degree, a unit length of
each should evolve the same amount of heat, i.e.,
n2‘5§ = _ x2‘$f,
(¤r+lRi)” (¤=r-l—p1Ri)”
Hence, as = pn.
409. 65 W; 15.4 per cent.
Solution. The current flowing through the storage battery is
;=L;‘€ :5 A
r
The power consumed by the plant is
The power expended to heat the storage battery is
N2 = I”R = 10 W
410. N, = 1,100 W; 82 per cent.
Note. The lpower consumed by the motor is N 2 = VI; the power
expended to eat the windings of the motor is N2 = I“R and the
power converted into mechanical energy is N 2 = N 2 — N2 =
= I (V — IR).
411. 45 min; 10 min.
Solution. If r, and r2 are the resistances of the first and second coils
and V is the mains voltage, the amount of heat liberated will be
_ Vzz, _ V2¢2
°·T·¢;"
Hence,
L- *4 -2.
rz _ tg _ 2
In the case of a series connection the resistance of the electric kettle
heater will be r2 = r, —{- Tg and the time of heating can be determined
from the equation
Q_ VZZ3 = Vzli
_ —— "1+7'2 T1
1.e.,
t3 = it-
ri-I-rz n
or
t3= ti·;..-Bti:45 min
1
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In the case of parallel connection of the coils
Q =V2*4 (*’1+F'z)= Vzti
T {T2 ° Ti
y2
HBHCG, $4:- $7 ti = Hill].
z
412. The resistance of the cooled art of the wire becomes markedly
less than the resistance of the part tbat is not cooled and the current
accordingly grows in the circuit.
Since the same current is passed through both parts, most of the
heat will begin to zevolve from the uncooled portion of the wire.
443, ;= :()_()9 S
I e
[29 2t C 1diS iPz
T —-T =———=-———— T-T =0.1°
3 0 Czdzsg C2d2S%P1 ( 0)
Note. The amount of heat liberated from each centimeter of the
fuse is
Q: [2 .9.1. g
S1
The amount of heat necessary to heat this wire to its melting point is
Q = Crd1S1(T1 * T0)
The heating of copper wire can be calculated from the same equa-
tions.
414. C = 0.59 cal/g·deg.
Solution. If R is the resistance of each of the wires and I is the
current, the amount of heat liberated in the calorimeters will be the
same and equal to
Q = PR!
The thermal balance equation for the calorimeter and water shows
that Q = mAT, where m is the mass of the water. In the calorimeter
which contains the liquid, Q = CmAT2.
Hence, C = -gg,-il: 0.59 cal/g·deg.
z
415. More heat will be evolved in the steel wire for a series connec-
tion and for a parallel one more in the copper wire.
416. It will e reduced by a factor of 2.25.
417. 12,,:]/‘R,R,.
25. Permanent Magnets
418. mi: -2- aa 620 cgs electromagnetic umts; m2=i.240 cgs
leectromagnetic units.
17-1218

CHAPTER III. ELECTRICITY 257
 
In the case of parallel connection of the coils
Q =V2*4 (*’1+F'z)= Vzti
T {T2 ° Ti
y2
HBHCG, $4:- $7 ti =   Hill].
z
412. The resistance of the cooled art of the wire becomes markedly
less than the resistance of the part tbat is not cooled and the current
accordingly grows in the circuit.
Since the same current is passed through both parts, most of the
heat will begin to zevolve from the uncooled portion of the wire.
443, ;= :()_()9 S
I e
[29 2t C 1diS iPz
T —-T =———=-———— T-T =0.1°
3 0 Czdzsg C2d2S%P1 ( 0)
Note. The amount of heat liberated from each centimeter of the
fuse is
Q: [2 .9.1. g
S1
The amount of heat necessary to heat this wire to its melting point is
Q = Crd1S1(T1 * T0)
The heating of copper wire can be calculated from the same equa-
tions.
414. C = 0.59 cal/g·deg.
Solution. If R is the resistance of each of the wires and I is the
current, the amount of heat liberated in the calorimeters will be the
same and equal to
Q = PR!
The thermal balance equation for the calorimeter and water shows
that Q = mAT, where m is the mass of the water. In the calorimeter
which contains the liquid, Q = CmAT2.
Hence, C = -gg,-il: 0.59 cal/g·deg.
z
415. More heat will be evolved in the steel wire for a series connec-
tion and for a parallel one more in the copper wire.
416. It will e reduced by a factor of 2.25.
417. 12,,:]/‘R,R,.
25. Permanent Magnets
418. mi: -2- aa 620 cgs electromagnetic umts; m2=i.240 cgs
leectromagnetic units.
17-1218





258 ANSWERS AND SOLUTIONS
419. H =m m 0.36 cgs electromagnetic unit.
Solution. The intensity of the held at the point A will be equal
to the difference in the intensities set up by each pole separately, i.e.,
m m
H = H‘ " H2 =Ti@`i`F " F
The vector H will be directed along the axis of the magnet towards
the south o e.
420. mpz 65 cgs electromagnetic units.
Solution. The interaction between the near like poles will be F, =
2
= [Z-;. Since a < l, the interaction of the like remote poles will to
2
a good approximation be F, = gi and that of the unlike poles F, =
M J·“
JL" ,mH _ IE- 2
I F2 G
g I —— = --— lv 0.001
·" H}lI}}$Y}U?“?’?*¢l=ll=*~T * //;,5 Fs 412
and
2Z.———*—· . F3 az
Fi 298 The forces F2 and F, are inhni-·
g‘ tely small as compared with the
force F, and therefore the mag-
netic masses can be determined with a sufhcient degree of accura-
cy from the force F, assuming F, = P, i.e.,
m=`\/FZ§=a `[/P m 65 cgs electromagnetic units
421 . H = 0.5 cgs electromagnetic unit; H h = 1 cgs electromagne-
tic unit; HQ = 1.12 cgs electromagnetic units.
Solution. The magnetic needle will be acted ugon by two forces
tending to turn it (Fig. 298), their moments are: t e moment of the
fore;} due to the terrestrial magnetic held acting on the poles of the
nee e
F,2l = mH,,2l
and the mgnent produced by the load suspended from the needle and
equa to .
The condition for equilibrium of the needle will be
mHv2Z = Pl
Hence, HU = 57, = 0.5 cgs electromagnetic unit,
The horizontal component and the total intensity of the terrestrial
magnetic held can be found from the equation
Hh—°T'—HpC0tG and H=|/ H:+Hz
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422. Solution. At distances equal to the length of the magnetic
needle the terrestrial magnetic field of the Earth is practically uniform,
i.e., its intensity remains constant both in magnitude and direction.
For this reason, the terrestrial magnetic Eeld acting on the magnetic
needle can only give rise to rotating moments and fails to set up any
resultant, other than zero.
The held of a qermanent magnet is heterogeneous at distances equal
to the length of t e needle and changes appreciably. The intensity of
the field at one end of the needle is stronger than at the other. There-
fore, the held of the magnet acting on the needle sets up a resultant force
which is not equal to zero and causes both rotational and translational
motion of the needle.
6
x
x
x
5 A / F
/ l
/ g ,/
'M“1*‘|- / I 6
· 1¤!·:` / r x
.||l:,.;,¤ { [ \
/ I \
··:-;lll.·: A / \
5;-!,·;4_ x 1 x
§ii;r||; ZJ ', `O
vllilzini .m L -m
Fig. 299 Fig. 300
423. The bars should be placed as shown in Fig. 299. lf the bar A
is made of softé iron it will not attract the bar B.
424. F:-———n.}:-—& 0.36 d n.
5 1/5 zz Y
Solution. The poles of the magnet will act with forces F, and F2
directed as shown in Fig. 300 and equal to
rn
The position and magnitude of the resultant can easily be found
from simple geometrical considerations.
425. If the needle is arranged in the»plane perpendicular to the
magnetic meridian it will take a vertical position. _
The direction of the magnetic meridian can be found if the instru-
ment is revolved around a vertical axis to determine the posit1on_1n
which the needle will be vertical. In this case the magnetic mer1d1an
will coincide in direction with the axis of rotation of the needle.
426. At first the needles will be drawn apart since the magnet sets
up like magnetic qples at the lower ends 0 the needles which repel
each other. When t e magnet is brought sufficiently close the interac-
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260 y ANSWERS AND SOLUTIONS _
tion between the magnet and each of the needles will exceed that between
the needles which will then sink being attracted to the magnet.
After the magnet is removed the needles will again be drawn apart
due to the residual magnetisation.
427. m z 6.5 cgs electromagnetic units.
Solution. Let us consider one of the needles. It will be acted upon
by the weight P acting through the ceantre of gravity B and the inter-
action of the magnetic poles F = 2% (Fig. 301) acting through the
point A . For the needle to be in equilibrium the sum of the moments
of the forces acting on the needle
0 should be equal to zero, i.e.
l . oz. oi
Ia P?s1n?..Flcos?
1
Z 1 B 2 E.
I p 01- g gin .;L=
{ 412 Sanz fg-
l
..... .L€--..- A ,r hence
a —z · °° zp °‘
Fig. 301 ”‘ "‘ Sm ‘§” um Y
428. F z 60 gf; m z 406 cgs electromagnetic units. The equilibri-
um is stable.
F _ ,·‘
,2 __—__ mil
’ ?‘ “. ..-_ ·
1/'
I] B `°•&®l
II
u .
A 'li cx
P —mH _"-—
Fig. 302 Fig. 303
Solution. The magnet B will be acted upon by the moment of
weight P é cos on and the moment of magnetic interaction
mzl cos E`-
ot 2
Fl cos T2- = —-
4l2 sinz ?

260 y ANSWERS AND SOLUTIONS _
tion between the magnet and each of the needles will exceed that between
the needles which will then sink being attracted to the magnet.
After the magnet is removed the needles will again be drawn apart
due to the residual magnetisation.
427. m z 6.5 cgs electromagnetic units.
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(Fig. 302). It follows from the condition of equilibrium that
mz cos -2
P 2
Y COS G =————····C?
4l2 sinz —-
2
and. therefore the magnetic masses of the poles of the magnets will be
. on 2P cos on
m=l sin -— ———-·
2 cos -9-
2
429. M = PH sin ot.
Solution. Each of the poles of the needle will be acted upon from
the side of the magnetic fie d by a force F = mH which with t e needle
mf/V / mH
, ·— mf! -·m.H a
* ..
I l""*' /A,/‘ I I
-_ HmHilH:l§l·Qil€PE}3Z.:;:r·· -—· //4
/4 '
a/é“ ..... '-_
Fig. 304 Fig. 305
in the position shown in Fig. 303 has `a rotational moment
Fg-sinoi=-é-mHlsinoi
The rotational moment of the couple of forces acting on the needle
will be
M= mlHsinoc= PHsin oi
430. :1: z 0-.05 mm.
Solution. If x is the distance from the point of support to the centre
of gravity of the needle (Fig. 304), the condition of equilibrium of the
needle may be written as
Q2: = PH v
hence
x__ PH ,,
_ Q
431. M = PH 8111 :1.
Solution. The moments of the forces acting upon each pole of the
needle will be equal (Fig. 305) to (
mH (l + L) sin ct
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and
-—mH L sin cz
Hence. the total moment of the force acting on the bar is
M = mHlsinot= PHsino¤
4az. P1=m·%—=-Q- .
• 434. The arrangement shown in Fig. 306b corresponds to the posi-
tion of unstable equilibrium and that in Fig. 306a to stable equilibrium.
435. Upon contact with plate B, part of the mag-
1 -{·» netic lines of force are short-circuited through this
- plate (Fig. 307). The number of the lines of force
t -{-» penetrating plate A sharply decreases. As a result
· the interaction between the magnet and plate A also
1 -{» decreases and the latter drops.
· 436. In the second case most of the magnetic lines
1 .+» of force are short—circuited inside the part of the rod
. adjoining the magnet (Fig. 308) and the rod cannot,
T ..1., therefore, be magnetized as intensely as in the first
case.
437. In the hrst case, as the lower magnet is
(G) (b) brought nearer, the cylinders will be detached one
Fig_ 306 after another from the chain and attracted to the low-
er magnet.
In the second case, when the pole of the opposite sign is drawn clos-
er, the "strength" of the chain will increase as the lower magnet is
/675;/ ·— ==-·
{ {I' ' —\
{ ; { { { i·{{{ ‘
{ .}‘;‘F$‘¤
» ·{{ {tl {{ {nl
{{{{ e { Y__. ¤{{E
{ { n * { “ · {
{ ¤ K { { · ‘ ‘
| ,/ “ { *
M { {.~{{{ {
I/V1, / wl .{ {
* ’ A {In
/ .»1
{ f AQ %
Fig. 307 Fig. 308
brought near. As soon as the second magnet comes in contact with
the lower cylinder, the magnet will be attracted to the chain and will
remain hanging on it. _ _
438. The magnets are detached owing to a sharp decrease in the
number of the lines of force passing inside each magnet. At the moment
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of detachment an e.m.f. is induced in the coil due to the reduction
in the number of the lines of force.
439. (a) The bar will be magnetized due to the action of the vertical
component of the terrestrial magnetic held and the magnetic needle
will be attracted as it is brought near the ends of the bar.
(b) The bar will be magnetized by the action of the horizontal
component of the terrestrial magnetic held. The magnetic needle will
always turn towards the nearest end of the bar.
(c) The bar will not be magnetized by the magnetic held of the
Earth and the needle will not change its position when the bar is
brought close.
It is assumed in all the three cases that when the needle isbrought
close to the bar the distance between them is still large enough for
the additional magnetization of the bar due to the external magnetic
held of the needle to be neglected.
If the bar is turned, the behaviour of the needle will not change
in any of the three cases. y
440. Iron loses its magnetic properties at quite a high temperature
and behaves as any other non-magnetic substance (copper, glass, etc.).
When the nail is. heated in the flame of a burner to this temperature
the interaction of the magnet and the nail abruptly decreases, the nail
returns to the initial position. leaves the flame and_ gets cool. The
magnetic properties of the nail thus cooled are_rega1ned, the forces
of interaction between the nail and the magnet increase and the nail
is again drawn to the magnet.
441. See the solution to Problem 440.
The impeller rotates because the force of attraction acting on the
rods which are still outside of the flame of the burner is much larger-
than the forces acting on the hot rods er just
emerging from the flame.
26. Magnetic Field of va Current
442. See Fig. 309.
Note. Since the intensity of the magnetic
held of rectilinear current diminishes in pro-
portion to r the lines of force will be closer
together near the conductor and spaced —
girther apart at some distance away from Fig_ 309
443. H = 0.08 cgs electromagnetic unit; F = 0.4 dyn.
0.2 I
444. H = T .
Solution. In order to derive the formula, calculate the work done
by the magnetic held forces over the circuit enclosed by the sections of
the radii drawn from the line of the current and the arcs of the concen-
tric circles-the lines of force of the held. This calculation (see the
solution to Problem 339) `gives us
.51.. R2
Hz *77
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264 ANSWERS AND SOLUTIONS
Since, when R0==1, H0:.0.2I, it follows that
0.21
.H·—•‘*"R"""
445. The current should flow from west to east. The current-carry-
ing conductor should pass at a distance R = 5 cm below the point A.
Solution. For the resultant magnetic held at the point A to have
the vector H directed vertically the magnetic held of the current
should completely compensate for the horizontal component of the
terrestrial magnetic he d, i.e.,
0.2I
Hh—T
Hence, 0 21
H rt
446. The point will be located at a distance R :-94%-I-: 1.9 cm
V H fi-]- H g
in the northern hemisphere above and to the north of the conductor,
and in the southern hemisphere above and to the south of the conductor.
Tlhe direction fnipm tlge gonductor Ito
,y to e point B wi in ot cases ma e
arm Hc __ lv',. SOM" an angle ct with the horizontal such
Hb ' that tan on = -11;}- -.:0.4.
i . \\ ”§/ H Note. In the vcase considered in
‘ Hy `\@_*3a ¢‘ the problem the magnetic held of
` current should completely compensate
for the magnetic he d of the Earth.
The vector for the intensity of the
terrestrial magnetic held is equal to
H = 1/Hg—|—H§ and makes an ang-
Fig_ 3{0 le oz, wit;} the horizontal such that
tall (Z==
. . . v
Obviously, the intensity vector of the magnetic held of curre_nt H C
should have the_ same magnitude and pass at the same angle to the
horizontal, but in the opposite direction (Fig. 310).
447. H = O.
Solution. The current flowing along the pipe may be regarded
as the sum of many identical linear currents uniformly distributed
over the surface of the pipe. Correspondingly, the intensity of the mag-
netic held at_ any point in space may be considered as the sum of the
intensities of the helds esta lished by such linear currents.
Fig. 311 shows the cross section of a pipe along which current flows.
Let us compare the intensities of the magnetic helds set up at the
point A by the linear currents passmg through very small arcs S,
and S2. The currents I , and I 2 passing through S, and S2 will be di-
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• • _
peetly proportional to S, and S2, 1n other words 7-:3,- , But ,5*,
and S2 are proportional to the distances from the poinzt A arid therefore
élzgi-. The intensity of the magnetic held created by each of
2 z
these elements at the point A can be calculated from the formula
for the magnetic held of rectilinear current,
1.e., I I \‘_S'__/
H,=2& and H,:£;Q.
”· R= . No
Hence, / Ej·)4·—7,2
H 2 R1 Iz // ` \x »
\
l.B., Hg: H2 OI' Hg—Hg=0. // \\
Since by this method it is possible to / \
selegt for each ellement of thedcross siection , ‘ /\
of t e pipe anot er correspon ing e ement
that completely compensates for the magne- \5y/
tic held of the hrst element at the point A,
the resultant magnetic held of the current Fi 311
flowing along the pipe will be zero at any g'
point inside the pipe.
448. The intensity will be equal to that of the magnetic held set
up by the current flowing along the axis of the cable in the inner con-
ductor, i.e., H = (see Problem 447).
. I
449. A = FS = mH >< 2nR ==-Q%”'- 2nR =0.4:tIm= 12.6 ergs.
The work done by the magnetic held forces when the pole m is
passed along a closed circuit depends only on the intensities of the
currents penetrating the area conhned within this circuit, and does
not depend on the shape and size of the circuit.
450. It cannot. The surplus work obtained when the pole is moved
along a closed path around the current-carrying conductor is produced
by the energy of the current source. As the pole moves in the magnetic-
held the source of e.m.f.’s acting in the circuit of the cu1·rent spends
only some of its energy in producing I oule heat, the rest being convert-
ed into mechanical work done by the magnetic held. The machine
vgll stop as soon as the store of energy of the current source is exhaust-
e .
451. F = O. _ O
Solution. All the elements of current 1n the branching are com-
pletely symmetrical with respect to the point 0. Each element A (Fjig. 342)
corresponds to another element B parallel to A with the same direction
of current and which is the same distance away from O, but situated
on the other side of it. The intensities of the magnetic held produced
by the elements A and B at the point O will be equal in magnitude
18-1218
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266 ANSWERS AND SOLUTIONS
but opposite in direction and, as they are added up, cancel each other
out.
452. The cork will hrst turn so that the plane of the wire is per-
pendicular to the magnet and then it will approach the magnet.
453. F = 0.3 dyn.
454. The electric charges moving together with the disk set up in
the surrounding space a magnetic held similar to that of a circular
current. The lines of force of this held above the
disk will be peiépendicular to the plane of the
drawing, behin it. The magnetic needle will
turn clockwise (if viewed from below).
455. tan oz.=-gg:-0.314; ot= 17°24'.
A H ;,R
Solution. The magnetic needle is acted
upon by two magnetic helds: the horizontal
B component of the terrestrial magnetic held Hh
and the magnetic held of the current H C. The
needle always arranges itself so that the sum
of the rotating moments generated by these
helds is equal to zero. The sum of the moments
will be equal to zero if the resultant of all the
forces is directed along the needle (Fig. 313),
Fig. 312 i.e., if
HA
t =——·
anu HC
Since we are given that the needle is small and is arranged in the
iw}
A.:} ’@----_v
l'I*’»» a ‘ \ P
w , Hc · /
nl I ’ \ ,. ‘
...-...._.. rlellynli \ Q
www \ z%
la} ‘“"‘ at "‘
GI
l 1 H
M' I 2 { \"
' ‘4 l / `
ilrllu · \
Fig. 313 Fig. 314
centre of the circlq. it may be assumed that the intensity of the held
of the current act1ng on the needle is
0.2nI
H·=="IT`
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(see Problem 453). Hence,
tan G __-:
-456. sinot--H--E- , ot-30 .
Solution. When the circle turns through an angle on so also does
the intensity vector of the magnetic field of current HC (Fig. 314).
For the needle to lie in the plane of the circle after rotation, this plane
should accommodate vector H —the intensity of the resultant field
formed by the summation of the magnetic fields of the Earth and the
current. Since HC is always perpendicular to the plane of the circle
with current it follows from simple geometrical considerations that
H:-L and H:Hhcosoi
tan oi
Hence,
HC __ . _ H C
—HhCOSG OI` SlHG——?·i·,T
457. H :50.4 oersteds.
27. Forces Acting in a Magnetic Field
on Current-Carrying Conductors
458. The conductor will first turn counterclockwise in a horizontal
plane (if viewed from the top) and will then go down.
Note. The lines of force of the magnetic field at the point A
(Fig. 315) pass from the bottom to the top at an angle to the line of
the current. At the point 0 the lines of force pass parallel to the line
of current and at the point B from the top to the bottom at an angle
to the line of current.
The nature of motion of the conductor can be determined by apply-
ing the left-hand rule consecutively to the sections of the conductor
adjoining the points A, O and B.
459. The conductor will wind itself around the magnet as shown
in Fig. 316.
Note. In order to determine how the conductor moves, find the
direction of the lines of force in the sections adjoining the po1nts_A
and B and apply the left-hand rule to establish the direction of motion
of these sections.
460. The conductors will tend to turn so that they become parallel
to each other and then will be mutually attracted. _
Note. In order to solve the problem,_consider the action of the
magnetic field of current I , on the sect1ons of the conductor with
current I2 adjgining the points A, 0 and B (Fig. 317).
46l. F = .
Solution. The lines of force of the magnetic field of current]; are
concentric circles. The current I , passes along one of these lines of
18*
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force. For this reason the magnetic field will not act on the current I ,.
All the elements of the conductor with current I 2 also coincide every-
where in direction with the axial line of force of the magnetic field
f_ I
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H I 40/: "* /// ’/ \\\1\\
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set up by the current I1. Likewise, the current I2 will not be acted
upon by any forces from the side of the magnetic lield.
462. The end of the spring will perform pelriiodic oscillating motfonsi
Solution. W en the circuit is c ose
H I each coil_of the spring will, in the Same
\ ~’ way as circulating current, set up its
| own magnetic fielcl_and attract the adja-
[ cent .00118. The Spring will be compressed
, A and its lower en will leave the mercury.
The current circuit will be interrupted,
the magnetic field will vanish and the
spring willhthen sgraightlen itself out. hAs
_______ 1 soon as t e en o t e spring touc es
gf li H the mercury _the entire process will be
1 ’°p2%?dXi“’°‘ · i
. ong a circum erence.
ll Solution. _A _beam of moving charged
B. particles is srmilar to a certain current
I I having the direction of the velocity v
', of the particles. If the lines of force of
the magneiirc neg are girected tpwards the
observer ig. 8) t e partic es moving
Fig, 317 with a v6l00ity v will be acted upon
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CHAPTER III. ELECTRICITY 269

from the side of the held by the force F directed perpendicularly
to the velocity v and distorting the path of the particles (apply the left-
hand rule to hnd the direction of the force).
Since we are given that the magnetic held is uniform, the force F
will be constant in magnitude and impart centripetal accelerations a
which are also constant in magnitude to the particles. It follows from
the fact that the velocity of the particles and the centripetal accelera-
tion is constant, the radius of curvature of the path of the particles
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should everywhere be constant to (41:%-), .i.e., the path should be
circular.
464. The conductor CD will hrst move upwards along the conductor
AB, turning at the same time as shown in Fig. 319, and then will move
away from it.
Solution. The direction of motion of - 5
each element in the conductor CD can [ ‘
be found from the left—hand rule. Since it ' [ I
is given that the conductor is uniform its -.-3.- 0
centre of gravity will lie at the point 0. { C', \D
The intensity of the magnetic held l a {X i
at the point C will be greater than at gl ‘, \ [D)
the point D (see Problems 442, 444). gr \\ ‘>,;¢’
Larger forces will act on the elements y ,;»\
adjoining the point C from the side of \/,7
the magnetic held than on the identical ,4
elements in contact with the point D. _
The point of application of the resultant Fig- 320
of all the forces acting on the conductor
CD will lie to the left of its centre of gravity. Therefore, as the con-
ductor CD moves up it will at the same time begin to revolve clock-
wise around the point 0.
465. See Fig. 320 and the solution to Problem 464.
466. They will turn and set themselves parallel so that the direc-
tions of the currents flowing in them are the same.
467. The ring will be attracted to the magnet, ht itself round it
and move along, stopping at the neutral line. In this case the direction
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270 ANSWERS AND SOLUTIONS
of the lines of force of the magnetic field of the current will coincide
with the lines of force of the magnet field.
468. The ring will jump off the magnet, turn over and fit round
the magnet with its other s·ide foremost.
469. The disk will begin to rotate clockwise.
470. If the initial position of the frame is arbitrary it will tend
to turn and set itself in the plane passing through the rectilinear
conductor so that the direction of current in the side of the frame clo-
sest to the conductor coincides with the direction of current in the
rectilinear conductor.
471. See Fig. 321.
The forces F, and F2 will reach maximum when the plane of the
frame is perpendicular to the magnetic lines of force. The forces become
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zen; when the plane of the frame lies in the same direction as the lines
o orce.
As soon as the frame turns through 180° from the position shown
in Fig. 321 the forces F, and F2 will reverse their directions and will
tend to compress the frame along its axis
/ ___p__ of rotation.
g \~_\ 28. Electromagnetic Induction
" ii § { ` 472. See Fig. 322.
{ § ___., ` 473. The current will flow from C to A.
*\_ g § _ " When the direction of motion of the con-
.....»-, ductor is changed the induction current is
· reversed.
' 474. If the conductor is arranged above
Fig. 322 the magnet and the latter is turned west-
wards, the conductor will carry a current
from north to south. If the magnet is turned eastwards, the current
will flow from south to north. If the conductor is under the magnet,
the current will flow from south to north in the first case and from
north to south in the second.
475. In the hrst case the current will flow from the axis of the disk
tlowaids the lower edge and in the second it will flow in the opposite
1rec ion.

270 ANSWERS AND SOLUTIONS
of the lines of force of the magnetic field of the current will coincide
with the lines of force of the magnet field.
468. The ring will jump off the magnet, turn over and fit round
the magnet with its other s·ide foremost.
469. The disk will begin to rotate clockwise.
470. If the initial position of the frame is arbitrary it will tend
to turn and set itself in the plane passing through the rectilinear
conductor so that the direction of current in the side of the frame clo-
sest to the conductor coincides with the direction of current in the
rectilinear conductor.
471. See Fig. 321.
The forces F, and F2 will reach maximum when the plane of the
frame is perpendicular to the magnetic lines of force. The forces become
H
v  E"   ’ *
, l
.$` IZ I E N . '
A · /»
0 7
-1-—·—-0-—·-
Fig. 321
zen; when the plane of the frame lies in the same direction as the lines
o orce.
As soon as the frame turns through 180° from the position shown
in Fig. 321 the forces F, and F2 will reverse their directions and will
tend to compress the frame along its axis
/ ___p__   of rotation.
  g   \~_\ 28. Electromagnetic Induction
"  ii § { ` 472. See Fig. 322.
{ § ___., ` 473. The current will flow from C to A.
*\_ g § _ " When the direction of motion of the con-
  .....»-,   ductor is changed the induction current is
· reversed.
' 474. If the conductor is arranged above
Fig. 322 the magnet and the latter is turned west-
wards, the conductor will carry a current
from north to south. If the magnet is turned eastwards, the current
will flow from south to north. If the conductor is under the magnet,
the current will flow from south to north in the first case and from
north to south in the second.
475. In the hrst case the current will flow from the axis of the disk
tlowaids the lower edge and in the second it will flow in the opposite
1rec ion.





CHAPTER IV. 0PT1cs 271
476. When the conductors are moved towards each other the direc-
tion of the current induced in the second one will be opposite to the
direction of the current I . If the conductors are drawn apart, the direc-
tions of the currents will coincide.
477. The current will flow counterclockwise.
478. As it passes through the position A the current will flow
counterclockwise. When passing through the position B therewill be
no induced current. In the case of the position C the current will flow
clockwise.
479. As the pendulum oscillates, the periodic changes in the area
enclosed by the circuit will induce currents in the latter. The induced
currents will be directed so that their magnetic field compensates for
the change in the flux of the magnetic lines of force penetrating the
area of the circuit.
When the pendulum swings so as to increase the area enclosed by
the circuit the current will flow counterclockwise, and if the motion
is such as to decrease the area enclosed by the circuit, the current
will be clockwise. The interaction of the magnetic held of induced
currents with the field of a permanent magnet will further damp the
oscillations of the pendulum.
480. An e.m.f. will be induced because the introduction of the wire
into the space between the poles of the magnet will change the number
of the magnetic lines of force passing through the area enclosed by the
circuit.
481. The potentials at the ends of the wings will be different.
If the aircraft flies in any other direction the potential difference
will not change its value because it depends only on the vertical com-
ponent of the terrestrial magnetic field and- on the horizontal velocity
of the aircraft.
482. The e.m.f. will be minimum when the frame arranges itself
in the plane passing through the rectilinear conductor.
The maximum e.m.f. will be induced when the frame is perpendi-
cular to this plane.
483. There will be no current.
Chapter 1`V
OPTICS
29. The Nature of Light
484. K — M = 250 millimicrons.
c
Solution. The wavelength of red light in vacuum will be }.= T-
and the velocity of these rays in glass will be v =-7%
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The wavelength of red light in glass is- Ai: £— .
. . c 1-—n
The change in the wavelength 1S 2.1-7i.:-Tv-·—’—{——
485. vi = 3%-: 2 X 1010 cm/s; v2 :-3-:1.95 X 1010 cm/s.
1 2
486. v> 2 X 1010 cm/s.
487. Coloured bands in thin films are caused by the interference
of light waves reflected from the up er and lower boundaries of the
film. A wave reflected from the lower boundary should traverse a longer
path than a wave reflected from the up er boundary. For this reason
the wave reflected from the lower boundlary lags in phase behind the
wave reflected from the ulpper boundary. The amount of this lag express-
ed in terms of the lengt of a light wave depends on the thickness of
the film at the point of reflection and on the length of the light waves
in the film.
Upon reflection, the waves corresponding to various colours will
acquire a path difference equal to an odd number of half-wavesat the
points of various thickness. At each given point in the film the inter-
erence of the reflected rays will damp some colours of the s ectrum
and intensify others. Therefore, the points in a film of varying thickness
will seem to be coloured different y.
488. Each of the horizontal interference bands corresponds to some
definite thickness of the film. The water in the interna layer of the
Elm gradually flows into its lower part and makes it thicker while
the upper part grows thinner. The points corresponding to some definite
thickness of the film are gradually displaced and the respective inter-
ference bands move downwards with them. After some time the Elm in
the upper part becomes one quarter the thickness of the length of the
shortest light wave incident on the film. During the interference of
rays reflected from the film the waves of all lengths will be damped at the
points in the film, and the spot will a pear dark in the reflected light.
489. Since after the space is filled) with liquid the conditions of
reflection of the waves from the lower surface of the lens and from
the upper surface of the glass become identical (both waves are reflected
from an opltically denser medium), a bright spot will appear in the
centre of t e rings in the reflected light instead of the dark spot that
was there before the space between the glass and the lens was hlled
with liquid. The rings will be displaced and their width altered in the
space between the glass and the lens due to the decrease in the velocity
of light. The rings will become narrower and denser.
490. The light will be reflected from the front and rear surfaces
of the film. The conditions of reflection will be the same in both cases.
For this reason the reflected. rays leaving the film will have a path
difference equal to half the length of the wave and will completely
damp each other in the case of interference.
491. E = 3.31 X 10*10 erg.
492. E = hv = 3.03 X 10-12 erg.
493. F = 6 X 10* tons.
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Solution. The surface of the Earth receives the entire uantity
of light coming from the Sun inside a solid angle formed by tge circle
equal to the area of the cross section of the globe. The total energy
absorbed by the Earth is E = nR2 >< 1.9 cal where R = 6,400 km
is the radius of the Earth.
The force of the sunrays on the Earth, ig they are completely ab-
sorbed by the terrestrial surface, is F = 7 .
494. F=.E.g.;6.8>< 10-6 dyn.
Note. See Problem 493.
495. Note. The quantity of light from the Sun incident on any
area S is proportional to the solid angle which this area makes with
the Sun. As the area is moved away this angle diminishes in proportion
to the square of the distance of the area from the Sun. Accordingly,
the qluantity of light falling on the area and therefore the force exerted
by t e light should also diminish in proportion to the square of the
distance as the area is moved away.
30. Fundamentals of Photometry
496. h = 1 m.
497. By 40,000 tin}es; 160,000 1}.
498. Solution. E=-?cosa=-—J-—?=25 lx,
r (h2+a2) /2
499. Z= 55 m.
Note. The illumination provided by one lamp on the ground at
a distance a= —g will be A
// I
E In / '
T=_`“2W ’ l"
Hence, C {M —__}
.....iT_ \__ {
G:]/(2&)2’ -;.2:27.5m \ ·
E _ \\l _
500. The illumination will be `l/E times B
greater at the point C than at the Fig_ 323
point B.
Solution. Tho illumination at the point B is
I
Eazw
and at the point C
I s
E,:_.‘E%°£.
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274 ANSWERS AND SOLUTIONS
From triangle ABC (Fig. 323)
T = = COS B
where B is the angle at the vertex A. Therefore
E0 COS CZ.
E1 — cos2 [5
When on = B = 45° _
12,:-.1.20 1/ 2
501. E = 5 lx.
502. E = gg- and is the same for both sides.
503. The illumination of a plate in a camera depends on the quan-
tity of light passed through the lens and on the ratio of the area of
the object being photographed to the area of its image on the plate.
Z
......_..Qi.-. .-....-- .
4
Fig. 324
The quantity of light Q passing through the lens is proportional
to the so id angle which the lens makes with the point o the object,
i.e., it is directly proportional to the area of the aperture of the lens S
and is inversely proportional to the square of the distance ai from the
?L.a..._........-. ....-€Zz...
Fig. 325
S
camera to the object (Fig. 324) or Q ~-(E . The ratio of the linear
dimensions of the obggect to those of the imagle is equal to the ratio of
the distances of the o ject and the image to t e camera lens (Fig. 325).
Therefore, the area of the object 0, is related to the area of the im-
age oz as the square of the distances of the obyect and the image from
the lens, i.e.,
g = si.
U2 G;
Comparing the results obtained, we find the illumination of the
image
E ...0.24. ....€. Ezi
02 F- a§ a§ ag
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i.e., the illumination of the image in the camera is inversely propor-
tional to the square of the distance from the lens to the image.
The image of a distant object is closer to the lens than that of an
object located nearby. Hence, the illumination of the image of a dis-
tant object will always be greater than that of the image of a near ob-
ject. In the first case (near object) a longer exposure is required than
in the second case.
504. 1] .¤ 4 per cent.
The quantity of light emitted by the lamp is approximately equal
to two joules = 2 >< 107 ergs.
505. Q = 2.4 >< 1015 kcal; 0.441 >< 10"° of all the energy of the
light emission from the Sun; the total amount of energy received by
the Earth is 0.22 of the energy received by Jupiter.
Solution. The amount of energy received by the Earth is
Q1 I miq.
where nr} is the cross—sectional area of the Earth.
The ratio of Q to the total energy of emission E is
.Qi:..&-.;=L
E 4n _ 4R}
where co. is the solid angle which the Earth makes with the Sun. The
ratio of the energies received by the Earth and Jupiter is
&-;¤x-_.riR%
Q2 mz TER?
31. The Law of Rectilinear Propagation
and Reflection of Light
506. On one straight line so that the planes of the object and the
screen are perpendicular to this straight line.
507. The radius of the half-shadow R. = 15 cm and the radius of
the full shadow R2 = 7.5 cm. The sha-
dow will disappear when the ball is at U 0 U:
a height of 2.5 m. The dimensions of \\ I
the shadow will be constant if the radi- \\ I
us of the ball is equal to that of the x D li
sphere. \\ ,
Note. The radius of the half-shadow B /8
can be found from the similarity of the I {
triangles CCZD, BB.D and AA 2D (see / \
Fig. 326). The radius of the shadow is [ \ A
clear from the triangles OA.A, OBB. A Ar / I I / M
and OCC .. The straight line CZC. is equal V
to the diameter of the sphere and BB. 0
to the radius of the ball. The sections A C Fig. 326
and AB are equal respectively to the
heights of the sphere and the ball above the floor.
508. The sources should be moved along the tangents to the rod
passing through the point O.
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i.e., the illumination of the image in the camera is inversely propor-
tional to the square of the distance from the lens to the image.
The image of a distant object is closer to the lens than that of an
object located nearby. Hence, the illumination of the image of a dis-
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504. 1] .¤ 4 per cent.
The quantity of light emitted by the lamp is approximately equal
to two joules = 2 >< 107 ergs.
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light emission from the Sun; the total amount of energy received by
the Earth is 0.22 of the energy received by Jupiter.
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Q1 I miq.
where nr} is the cross—sectional area of the Earth.
The ratio of Q to the total energy of emission E is
.Qi:..&-.;=L
E 4n _ 4R}
where co. is the solid angle which the Earth makes with the Sun. The
ratio of the energies received by the Earth and Jupiter is
&-;¤x-_.riR%
Q2 mz TER?
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us of the ball is equal to that of the x D li
sphere. \\ ,
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When motion occurs in other directions the shadows diverge or are
superimposed on each other.
509. With the given arrangement each point of the object will be
represented by a bright circle whose diameter can be found from
the ratio (Fig. 327)
d' _ ED
T “' cp
i.e.,
d’=“Z:E`1% d=2 mm
Therefore, the parts less than 2 mm in size cannot be distinguished
because the bright circles representing the separate points of these
parts will be superimposed on each other.
d ’ ·——·-—
— D
Fig. 327
510. The shape of the light spot will depend on the form of the
source of light and on the position of the screen onto which the spot
is projected. For example, if the source is circular in shape and the
screen is placed at various angles with respect to the incident rays
the spot will take the form of a circle or a more or less elongated
ellipse.
For the conditions specified in the problem the shape of the spot
will not depend on the shape of the mirror.
511. The colour of any surface is determined by the spectral compo-
sition of the rays reflected by it.
When the surface is dry the rays corresponding to the colour of
the surface are superposed by randomly diffused white light due to the
roughness and irregu arities of the surface (cloth fibres, for exam le).
The presence of this diffused white light makes the basic colour of) the
surface faded and less bright.
If the surface is moistened with water all the irregularities are cov-
ered by a surface nlm of water and the diffused white light disappears.
There remains only the basic hue on the surface which we see as a
a richer and darker one than before moistening.
512. Note. To prove this, construct the image of the oint A in
the mirror and consider the ratio between the lengths ofp the paths
8Dd
513. If the observer looks along the line passing through the ima-
ges A' and B' of the pins in the mirror (Fig. 329), he will see these
images superimposed on each other. In the position C the observer
will see the image of the pin B to the right of the image of the pin A.
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ln the position D he will see the image of the pin B to the left of the
image of the Fpin A.
514. See ig. 330. The rays coming from the point O' will be pro-
pagated inside the band restricted by the straig t lines AB and CD
4 B \\\A Al
' \ °~ ‘"*"‘`‘— · ·*·— ·>•
I \ l \\ { /
g \ I \ 8 B/’
l \\ I Pi-- *2*
{ \\ \\ //
...."h_“."Q;. . ..u_, ,/
x
I / / /
l ////// A
/ /
11,1*/ gr
Fig. 328 Fig. 329
after reflection from the mirror. The rays coming from O will be inside
the bands AE and CF. The rays coming from all the points on the ob-
ject will only arrive at each point in space between the straight lines
0’ ——-— —---
F /4}
I / /
0 `iriél
s//’
/ ...**.... -.--- 5
[ 0 ////
0 / X
cz
6* Q4 z, 6 zz .0
F
0
Fig. 330 Fig. 331
AB and CF. The eye can only see the entire image of the object if
it is at one of the points enclosed between the rays AB and CF.
515. By 10 cm.
517. At an angle of 45°.
518. on = 2°; as = l tance xs loc = 5 X 0.035 = 17.5 cm.
519. 3 m. _ _
Solution. The image of the wall will be behind the mirror at
a distance lz = 4 m. If the eye is placed at the point A (Fig. 331)
it will see only the rays coming from all the points in the section of
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278 ANSWERS AND SOLUTIONS
the wall image DE after the reflection in the mirror BC. Thus, the
section of the wall visible in the mirro1· will have dimensions
Z1
520. Only when the eye is placed inside the triangle DEH limited
by the rays DG and EF (Fig. 332).
F
G
C A H
”= ‘ ~·`$ {
I r
"`°'T'“""""`T“"`;'>/ V yr v
{ /{/"‘ ; ,.·-•·T" // //
`N/»’ E
U, A,
Fig. 332
521. The per endiculars to the mirrors A1 and A3 (see Fig. 173)
should make angles of 22°30' with the incident rays, and the perpendi-
S
/,’| C
I
E /
\`xL~\ I
1/ lu D
fl /”/l •‘ \\ .,3
/,/’ "¤`ffIZ?#" ` / 9
S 3'éi/*"/I, // /,/’
I { ,/ I/’
» ”"‘{ 1 / ,/’
{ ,/ \ \` a 4»’
4/ xo 1.*,,
4 ...... .. .... A S
Fig. 333 Fig. 334
culars to the mirrors A3 and A3—angles of 77°30'. The height of all
the mirrors should not be less than the diameter of the lenses d, the
Width of the mirrors A3 and A2 should b6 Gqual to i.O3d
and the width of the mirrors A3 and A3 should be 2.6id.
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522. See Fig. 333; on = 120°.
523. The centre of the circle lies at the point O where the minors
intersect.
524. Inside the band limited by the rays OC and OD (Fig. 334).
32. Spherical Mirrors
526. f= Vpq = 40 cm.
527. Solution. It follows from the similarity of the triangles ABF
and CDF (Fig. 335) that G
ig- = 1, ·· { .... 1......-.. B
li ai-, _ 0 f \\ F Z'
and from the concave mirror for- A
mula 0 Lz
a ··_· s
H 2 ¤1-f Q2
•
°" ,2 _ ,,2 Fig. sas
TI “ `ZI
528. a2=—§- m; R=0.50 cm; f=25 cm (see Problem 527).
529. f= 2.5 cm.
Note. If ai and az are the initial distances of the object and the
image from the mirror, Z, and lg are the respective lengths of the object
and the image, and ag is the distance from the image after the object
is moved, the focal length can be found from the following system of
equations:
li ....2...4 ........“i°"b.-2 J. L...L d 1 1 -1
lz_¢z—° as _, a1+¤z—f an G1-b+¤s—f
53{)_ ..2 = L _
Z1 P I
Note. The ratio -f- can be found from the equations:
1
l
7§··=·£?— . ¢11=P+f• a2'-=<1+I°» PQ=f2
1 ¢1
See Problem 526.
531. f= -%· = 50 cm; d = 2lcp.
h532. At a distance of 50 cm from the mirror and 2 cm from each
ot er.
Note. When the two halves of the mirror are drawn apart the source
is displaced 0.5 cm from the optical axes of the halves. The distances
of the images from the new o tical axes of the halves can be calculated
in· the same way as in Probfem 527.
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230 ANSWERS AND SOLUTIONS
533. b = 15 cm.
Solution. If a, and az are the distances from the mirror to the source
and its image respectively, then, from the given conditions, the ratios
ai = a -{— b and az —}- a = b should hold. Inserting the values of ai
and az obtained from these ratios in the convex mirror formula we get
b = |/ 2aF —}- az
The coincidence of the image can be established by observing the
changes in the relative position of the images when the eye is moved
away from the ogtical axis of the mirror. If the images are at various
distances from t e eye the images will be displaced with respect to
each other when the eye is moved as described above (phenomenon
of parallax). If the images are at the same distance, they will coincide
wherever the eye is placed.
d (b- a) .
534. F=———--—— . The cannot. See F1 . 336.
b-(a+d) Y g
/
./(Z ‘
b"a \\
§ `~ B
P
Fig. 336
Note. The distances a, and az from the concave mirror to the first
needle and its images should satisfy the ratios o, = d and az = b -— a.
When these values of ai and az are inserted in the mirror formula,
remember that az should be negative.
In order to und whether the images can be observed at the same
time, consider the path of the rays that actually take part in the for-
mation of the images. All the rays reflected from the concave mirror
and forming the image of the first needle pass above the optical axis.
All the rays forming the image of the second needle in the flat mirror
pass below the optical axis of the concave mirror. Since the rays reflect-
ed from the two mirrors do not overlap at any point it is impossible
to observe both images at the same time. To com are the position
of the images the observer should move his eye in tgne vertical plane
near the optical axis and view the images in turn.
535. See Fig. 337; hi = 5 cm.
Solution. If K,P, is the image of the object KP, the rays forming
the image of the point K will only be propagated inside the cone en-
closed by the rays K ,A and K ,B. The rays forming the image of the
point P will pass inside the cone enclosed by the rays P,P and P10.
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In order to see the entire image the observer should place his e e
inside the band between the straight lines K,.4 and P,C in which the
rays coming from all the points on the object are superposed. The
maximum dimensions of the object are determined from the similarity
K . / ”
I g // H
r b S 0
P, aw `Y' “ "
x\\ \
xx p
22
A
8 C
Fig. 337
of the triangles DES and SPR (in this case the curvature of the sec-
tion DE is neglected as is common in elementary optics):
PR a ad
·5E,·"-'=···lT· , CID
. " ZN
Fig. 338
536. X = 45 cm. _
N ate. If lz is the image of the face (F_1g. 338) and az is the distance
from the image to the mirror, the eye will see all of the image for the
minimum distance X from the mirror when the following condition
is observed:
X *_ X+d2
T' lz
The values of ag and lz can be determined from the convex mirror
formulas (see Problem 526) and used to find
xzr b:lgE.".
19-1218
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282 ANSWERS AND SOLUTIONS

537. At a distance of 5/6R from the nearest wall; at a distance
of R/2 from the remote wall.
N ate. To solve the problem, calculate in the first case the position
of the image A, produced by the remote wall and then considering
this as a source find its ima_ge A2 formed by the other wall.
In order to determine the position of the images A, and A2 graphi-
cally, consider the path of a certain arbitrary ray SB (Fig. 339) coming
/· "`—`-" b
/--\ / Q
x
{ Ar
YW" V W
B
O
h
Fig. 339 Fig. 340
from the source at a small angle to the o tical axis. An additional
optical axis aa drawn so as to be intersected by the ray SB at the focus
is necessary to determine the direction of this ray after the first reflec-
tion at the point B. The reflected ray BC will be parallel to this axis.
The image A, will be at the point of intersection of the ray BC with
_ the ppincipal optical axis. Af-
`* ter t e ray is reflected for the
S, second time from the nearest
'"' S · wall at • the point C the ray
should go para lel to the addi-
‘ cz, tional optical axis bb through
the focus of which the ray BC
az passes. The image A2 is at the
point of intersection of the ray
Fig. 341 C.42 and the principal optical
axis.
The sequence of operations for graphical construction of the image
in the second case is shown in Fig. 340.
538. X = 90 cm; it will not change.
N ate. The flat mirror should be placed halfway between thesource S
and its image S1, i.e., the following should ho d (Fig. 341):
__ ¤z—¤1 _ a1+a2 _ a§
X 2 +“*_ 2 2(a,-F)
539. X = 0.28R.
_ Solution. Let us denote the distance of the source from the concave
mirror by X and the distance of the image produced by the convex
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minor from this mirror by y (Fig. 342). The ratio
1 1 2
2R—X ' Y: T
will hold for the image produced by the convex mirror.
The image in the convex mirror is the source with respect to the
V""_‘_2” “—‘“‘
iVZ7-·‘;-••1•¢•;1••••¤-nnrniv I •¤i•* { "'Y"'*’*'*" ly °i*'
| I
l Z
|""__y""_T'l i-·——x——·-3
Fig. 342
concave mirror. If the point where the rays meet after two reflections
coincides with the source, then
1 1 2
__——2R+ y +Y=‘rr
The required distance is determined by solving these equations.
Since the path of the light rays is reversible when the initial direc-
tion of the rays is changed, the position of
the point where the rays meet remains the _ _
same. i 1
33. Refraction of Light at Plane / %j (QV?
Boundary / %//
540. i= 56°24’. %%/ ·/ /%
Solution. It follows from geometrical % ,// yl / W
construction that i -|- r = 90°, r = 90° —
—_ ii(Fig. 343). From the law of refraction Fjg_ 343
2- = n. Since sin r = cos i we get tan i = n = 1.5.
s1n r
541. 2.9 m.
Note. The length of the shadow of the pile will be
li=hit8I1T= 3 X 1.9 H1
542. h = 1 m.
Solution. The object will appear to be at a point S; where the ex-
tensions of the rays striking the eye of the swimmer meet (see Fig. 344).
From triangles OBS and OBS;
OB = OS tani= htani
OB = OS; tan r = h; tanr
19*
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OB = OS; tan r = h; tanr
19*





284 ANSWERS AND SOLUTIONS _
Hence,
tant
”···”T.=.·;:
Since the angles i and r are small we may assume that tan t z sin t
and tan r sz sin r. Therefore
h, : h = hh = 1 in
543. At a distance of d -|— g h below the bottom of the vessel.
Note. See Problem 542. The image of the point S, should be con-
8 structed in the mirror (Fig. 344).
I, 544. h,=-2-(2d-{-—;Lh)=3;-—|-h.
1, Solution. If S is the position of the image
W found in Problem 543 and OS = H = 2d —|-·-lg-h
t the observer will see this image at the
{ S - point S, which is at a distance h, from the sur-
, - 'Q ace of the water.
1 It follows from triangles OAS and OAS,
I (Fig. 345) (assuming that the angles i and r
_ Q are smal) that
‘ ,. ..2.-2.H
V I- n — 4
A g__ __,W, 545. n = 1.41.
Note. Since it is giyen that the refracted
Z ray is perpendicular to the second face of the
;___ §:.=···€==-=- ‘”“‘j‘i prism it follows from simple geometrical consi-
T il-Y.;-=-—i..%. ...1-;;; derations that the angle of refraction of the
5 ‘“——":·——‘2 ray r= 30°.
—- _.-’·'_.-gi ;;· .:; 546. h = 30 cm.
"°" ""_j The absence of the parallax shows that the
"" """ images coincide.
Note. See the solutions to Problems 526
Fig. and ·
547. If n < 2 the ray will be refracted and
emerge from the second_face.
If n > 2 the ray will be subjected to full internal reflection at the
second face and emerge from the prism through the third face perpendi-
cularly to the latter,
548. Tl··..·=.........._.....,.. =:¤1..3{t.
Solution. If a bright image of the point source appears on the upper
boundary of the plate, the rays coming from the source into the plate
at small angles i (Fig. 346) pass unhin ered through the lower bounda-
ry. If the angle of incidence of the rays on the lower boundary is larger
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than the critical angle the rays are subjected to total internal reflection,
illuminate the sensitive photolayer from below and form a halo.
The refractive index can be calculated directly from Fig. 346 and
from the definition of the critical angle
! Ta Sill i' =-L
I y ~
_ ”· - -ml,
=? T`———;._ --·‘%
%_-;=_""Z;§s,- -5. QS
[ .
.I I
Sl
Fig. 345 Fig. 346
34. Lenses and Composite Optical Systems
551. d = fq> = 2.35,mm.
N ate. See Fig. 347. The image of the Sun will be in the focal plane
of the lens and will be seen from the optical centre of the lens at an
d 1.; ....’°
r
Fig. 347
angle q> just like the Sun. Since the angle qa is small it may be assumed
that
tan up z qa
552. In the plane passing through the optical centre of the_ lens.
Note. To prove this it is enough to follow the motion of the image
when the object is brought up to the lens (Fig. 3482; _
Remember that in any position of the object t e direction of the
ray AF remains constant.,.The ray passing through O slowly_ turns
about this point, as the object is brought up to the lens, making an
increasing angle with the optical ams.
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286 ANSWERS AND SOLUTIONS
553. See Fig. 349.
554. It will move 5 cm closer to the screen.
N ate. In calculating the new position of the agex of the beam from
the thin lens formula the apex of the beam A s ould be regarded as
an object.
l` `*`:Z:~~——·.- __ ,
I " \"`—— A
r \}\ \\\ §
i____-__.... -Q.;% 0 ._._.--._--. F ..
§§ .
sa
Fig. 348
Remember that although in the normal case (the point of the object
is the apex of the diverging beam of rays) the apex of the beam lies
on the side where the rays are incident on the lens, in this particular
case the apex of the beam lies on the other side of the lens with respect
I A A
a / / z
Q /*/// g
Shy ,// // g
§ /’/ // g
·*I•—-••—·-O-·-——— g X - {1-——-———•-—--—-<~ .-
2/-` F /,/ //F 2F
/ ’
4’“`“ " if
I
S
Fig. 349
to the incident rays. For this reason, in calculations the distance ai
to the object should be introduced into the thin lens formula with
the minus sign, 1.e., ai = -—15 cm. _
in the case of graphical construction, determine the path of the
aux1l1ary rays BA _an CA 1mp1ng1ng on the lens from the left 1n the
direction of the point A . The point where these rays meet on the other
2de( of the lens w1ll show the new pos1t1on of the apex of the beam
' -
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555. j= 30 cm.
Note. See the solution to Problem 554.
556. See Fig. 351.
557. The source should be more than twice the focal length away
and the observer at one of the points in the area BAC (Fig. 352).
args cm
B ————- * —--·· Q `·· 7A
\ ’_
F § 5% F
_•__;._,, · -_..i( -_ , -1¤••1•-*•‘
// § /
/"’ /
C ' g
2
Fig. 350
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Fig. 351
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ggg ANSWERS AND SOLUTIONS
Note. The rays coming from the source past the mounting of the
lensdtowlards the olliserver and the rays from the image are propagated
insi e t e cones s own in Fig. 352.
The source and its image can only be seen simultaneously when
the1ge5é1re4 regions in space where the beams overlap.
. cm.
559. az == 60 cm; f= 20 cm.
Note. The ratio of the linear dimensions of the object and the
image is equal to the ratio of their distances from the lens. Therefore,
BI
..2;. [_
I . IA'
l-·——-—·a;————··l··———;———cz;————————-1
(al
A v'
__ S er
--•—
II
Bu A}
I
E—————·——-¢¤r——————··}————<Zr———l
(6}
Fig. 353
the ratio of the areas of the object and the image will be equal to the
ratio of tgie 2q&}1g·es cg their distances from the lens.
560. : , an 1 : 2,000.
561. S, z 0.52 km2; S z 0.13 km2.
562. j= 24 cm.
Solution. When the distance between the lamp and the screen is
constant the lens after being moved will again form a sharp image
as soon as the new distance from the lamp (Fig. 353b) becomes equal
%ol1ihe_pre¥10uS tdlistance of the image from the screen (Fig. 353a).
o owing rom is
ai — dg =
From the lens magnification formula and the given conditions we get
.2. = 2
az
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Solving these equations simultaneously and utilizing the lens formula
we obtain
f = 3%: 24 Om
563. a = ltan cp = 60 cm.
{Vote? 'lilhe size o the object is determined by the minimum viewing
ang e 0 t e eye.
564. At the principal focus of the lens.
$`*" `““``"”‘"
\ \/\ —` // / I
I \ x N -2 /, , I
I / Y / I
, .1// ”/
F s U
// ‘ / / F
D % I
x
/ .
Fig. 354
565. The image will be at a distance az = 60 cm on the same side
of the lens as the object (see Fig. 354).
Solution. In order to determine the position of the image produced
by the system as a whole, izlalculate the positions of the images formed
by the separate parts of t e
system consecutively along \ _
the path of the rays. =x_ F ,
T e lens for the object A .._
will produce a virtual image \
B lying to the left of the `
lens at a distance `~\
°=7.·@·s···=3° cm I ’" ‘
*"` Fi . ass
The mirror having B as the g
object will form an image _
Chlying at a distalnce a -|- b = 45 cm behind the mgrrof or, in
ot er words at a istance a' .-; a .|- 2b = 60 cm from t e ens.
On the right the lens receives rays from C as the object Qlld the
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290 ANSWERS AND SOLUTIONS
lens will form for C a real image D a distance
G2 ;' -€ Cm
to the left.
566. The image will be real and will lie between the lens and its
focus. See Fig. 355.
567. az = 100 cm. See Fig. 356.
Note. See the solution to Problem 565. ln calculations, bear in
mind that the first image formed by the lens lies behind the mirror.
. ——-··- ——· —-— —-- -4 ——-·· ··-·- -1
l \
.._. __. _ .
F x
{-4--————·—-—-——· CZz———-———>-i
Fig. 356
For construction it is convenient to take the rays going parallel
to the optical axis and through the front focus of the lens.
568. The source should be at infinity.
569. See Fig. 357; ag = 2.5 cm.
570. If the distance between the halves is infinitely small, the
beam will, for all intents and purposes, remain parallel. lf this distance
l
. —`·§ / .
L ’F `, ’ F
I 1 -_ 1I __ t i 1- _—— {
Fig. 357
is large but less than the focal length of each half, the beam of parallel
rays will be transformed into a beam of _converging rays.
When the distance between the lenses 1S larger thanthe focal length
of each, the parallelbeam, will be converte by the system into
Ei diverging beam.
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